Forecasting the number of road accidents in Poland using weather-dependent trend models
Piotr Gorzelanczyk
Państwowa Uczelnia Stanisława Staszica w PileAbstract
Every year a very large number of people die on the roads. From year to year, the value decreases, there are still a very high number of them. The pandemic has reduced the number of road accidents, but the value is still very high. For this reason, it is necessary to know under which weather conditions the highest number of road accidents occur, and to know the forecast of accidents according to the prevailing weather conditions for the coming years, in order to be able to do everything possible to minimize the number of road accidents.
The purpose of the article is to make a forecast of the number of road accidents in Poland depending on the prevailing weather conditions. The research was divided into two parts. The first was the analysis of annual data from the Police statistics on the number of road accidents in Poland in 2001-2021, and on this basis the forecast of the number of road accidents for 2022-2031 was determined. The second part of the research, dealt with monthly data from 2007-2021. Again, the analyzed forecast for the period January 2022-December 2023 was determined.
The results of the study indicate that we can still expect a decline in the number of accidents in the coming years, which is particularly evident when analyzing annual data. It is worth noting that the prevailing pandemic distorts the results obtained. The research was conducted in MS Excel, using selected trend models.
Keywords:
traffic accident, forecasting, trend models, weather conditionsReferences
ABDULLAH E., EMAM A. 2016. Traffic accidents analyzer using big data. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, Las Vegas, NV, p. 392–397. https://doi.org/10.1109/CSCI.2015.187.
Crossref
Google Scholar
AL-MADANI H. 2018. Global road fatality trends’estimations based on country-wise microlevel data. Accident Analysis & Prevention, 111: 297–310. https://doi.org/10.1016/j.aap.2017.11.035.
Crossref
Google Scholar
ARTEAGA C., PAZ A., PARK J. 2020. Injury severity on traffic crashes: A text mining with an interpretable machine-learning approach. Safety Science, 132: 104988. https://doi.org/10.1016/j.ssci.2020.104988.
Crossref
Google Scholar
BĄK I., CHEBA K., SZCZECIŃSKA B. 2019. The statistical analysis of road traffic in cities of Poland. Transportation Research Procedia, 39: 14-23. https://doi.org/10.1016/j.trpro.2019.06.003.
Crossref
Google Scholar
BISWAS A.A., MIA J., MAJUMDER A. 2019. Forecasting the Number of Road Accidents and Casualties using Random Forest Regression in the Context of Bangladesh. 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), p. 1-5. https://doi.org/10.1109/ICCCNT45670.2019.8944500.
Crossref
Google Scholar
BLOOMFIELD P. 1973. An exponential model in the spectrum of a scalar time series. Biometrika, 60(2): 217-226. https://doi.org/10.2307/2334533. Retrieved from https://www.jstor.org/stable/2334533.
Crossref
Google Scholar
CHAND A., JAYESH S., BHASI A.B. 2021. Road traffic accidents: An overview of data sources, analysis techniques and contributing factors. Materials Today: Proceedings, 47(15): 5135-5141. https://doi.org/10.1016/j.matpr.2021.05.415.
Crossref
Google Scholar
CHEN C. 2017. Analysis and Forecast of Traffic Accident Big Data. ITM Web of Conferences, 12: 04029. https://doi.org/10.1051/itmconf/20171204029.
Crossref
Google Scholar
CHUDY-LASKOWSKA K., PISULA T. 2014. Forecast of the number of road accidents in Poland. Logistics, 6: 2710-2721. Google Scholar
CHUDY-LASKOWSKA K., PISULA T. 2015. Prognozowanie liczby wypadków drogowych na Podkarpaciu. Logistics, 4(2): 2782-2796. Google Scholar
DUDEK G. 2013a. Exponential smoothing models for short-term power system load forecasting. Rynek Energii, 106(3): 14-19. Google Scholar
DUDEK G. 2013b. Forecasting Time Series with Multiple Seasonal Cycles Using Neural Networks with Local Learning. In: Artificial Intelligence and Soft Computing. Eds. L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada. ICAISC 2013. Lecture Notes in Computer Science, 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_5.
Crossref
Google Scholar
DUTTA B., BARMAN M.P., PATOWARY A.N. 2020. Application of Arima model for forecasting road accident deaths in India. International Journal of Agricultural and Statistical Sciences, 16(2): 607-615. Google Scholar
FIJOREK K., MRÓZ K., NIEDZIELA K., FIJOREK D. 2010. Forecasting electricity prices on the day-ahead market using data mining methods. Energy Market, 12. Google Scholar
FISZEDER P. 2009. GARCH class models in empirical financial research. Scientific Publishers of the Nicolaus Copernicus University, Toruń. Google Scholar
GORZELAŃCZYK P., PYSZEWSKA D., KALINA T., JURKOVIC M. 2020. Analysis of road traffic safety in the Pila poviat. Scientific Journal of Silesian University of Technology, Series Transport, 107: 33-52. https://doi.org/10.20858/sjsutst.2020.107.3.
Crossref
Google Scholar
GREGORCZYK A., SWARCEWICZ M. 2012. Analiza wariancji w układzie powtarzanych pomiarów do określenia efektów czynników wpływających na pozostałości linuronu w glebie. Polish Journal of Agronomy, 11: 15–20. Google Scholar
HELGASON A. 2016. Fractional integration methods and short Time series: evidence from asimulation study. Political Analysis, 24(1): 59–68. Retrieved from http://www.jstor.org/stable/24573204.
Crossref
Google Scholar
KARLAFTIS M., VLAHOGIANNI E. 2009. Memory properties and fractional integration in trans-portation time-series. Transportation Research, Part C, Emerging Technologies, 17(4): 444-453. https://doi.org/10.1016/j.trc.2009.03.001.
Crossref
Google Scholar
KASHPRUK N. 2010. Comparative research of statistical models and soft computing for identification of time series and forecasting. Politechnika Opolska, Opole. Google Scholar
KHALIQ K.A., CHUGHTAI O., SHAHWANI A., QAYYUM A., PANNEK J. 2019. Road accidents detection, data collection and data analysis using V2X communication and edge/cloud computing. Electronics, 8(8): 896. https://doi.org/10.3390/electronics8080896.
Crossref
Google Scholar
KOWALSKI L. 2022. Prognozowanie na podstawie szeregów czasowych. Prognozowanie i Symulacje. Strona Lucjana Kowalskiego. Retrieved from http://pis.rezolwenta.eu.org/Materialy/PiS-W-5.pdf. Google Scholar
KRZYCZKOWSKA Z. 2019. Przy jakiej pogodzie najczęściej dochodzi do wypadków? Wcale nie podczas złych warunków. Gazeta.pl. Moto.pl. Retrieved from https://moto.pl/MotoPL/ 7,88389,25510393,przy-jakiej-pogodzie-najczesciej-dochodzi-do-wypadkow-wcale.html. Google Scholar
KUMAR S., VISWANADHAM V., BHARATHI B. 2019. Analysis of road accident. IOP Conference Series Materials Science and Engineering, 590(1): 012029. https://doi.org/10.1088/1757-899X/590/1/012029
Crossref
Google Scholar
Las losowy (2023). Wikipedia. Wolna encyklopedia. Retrieved from https://pl.wikipedia.org/wiki/Las_losowy. Google Scholar
LAVRENZ S., VLAHOGIANNI E., GKRITZA K., KE Y. 2018. Time series modeling in traffic safetyresearch. Accident Analysis & Prevention, 117: 368–380.
Crossref
Google Scholar
LI L, SHRESTHA S., HU G. 2017. Analysis of road traffic fatal accidents using data mining techniques. IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), p. 363-370. https://doi.org/10.1109/SERA.2017.7965753.
Crossref
Google Scholar
ŁOBEJKO S., MASŁOWSKA K., WOJDAN R. 2015. Analiza i prognozowanie szeregów czasowych z programem SAS. Oficyna Wydawnicza Szkoły Głównej Handlowej, Warszawa. Google Scholar
MAMCZUR M. 2020. Jak działa regresja liniowa? I czy warto ją stosować? Mirosław Mamczur. Blog o data science, sztucznej inteligencji, uczeniu maszynowym i wizualizacji danych Retrieved from https://miroslawmamczur.pl/jak-dziala-regresja-liniowa-i-czy-warto-ja-stosowac/. Google Scholar
MARCINKOWSKA J. 2015. Metody statystyczne i eksploracji danych (data mining) w ocenie występowania omdleń w grupie częstoskurczu z wąskim zespołem QRS (AVNRT i AVRT). Katedra i Zakład Informatyki i Statystyki Uniwersytetu Medycznego im. Karola Marcinkowskiego, Poznań. Retrieved from http://www.wbc.poznan.pl/Content/373785/index.pdf. Google Scholar
MCILROY R.C., PLANT K.A., HOQUE M.S., WU J., KOKWARO G.O., NAM V.H., STANTON N.A. 2019. Who is responsible for global road safety? A cross-cultural comparison ofactor maps. Accident Analysis & Prevention, 122: 8–18. https://doi.org/10.1016/j.aap.2018.09.011.
Crossref
Google Scholar
MONEDEROA B.D., GIL-ALANAA L.A., MARTÍNEZAA M.C.V. 2021. Road accidents in Spain: Are they persistent? IATSS Research, 45(3): 317-325. https://doi.org/10.1016/j.iatssr.2021.01.002.
Crossref
Google Scholar
MUCK J. 2022. Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Retrieved from http://web.sgh.waw.pl/~jmuck/Ekonometria/EkonometriaPrezentacja5.pdf. Google Scholar
PERCZAK G., FISZEDER P. 2014. GARCH model – using additional information on minimum and maximum prices. Bank and Credit, 2. Google Scholar
PIŁATOWSKA M. 2012. The choice of the order of autoregression depending on the parameters of the generating model. Econometrics, 4(38). Google Scholar
PROCHAZKA J., CAMAJ M. 2017. Modelling the number of road accidents of uninsured drivers and their severity. Proceedings of International Academic Conferences 5408040, International Institute of Social and Economic Sciences.
Crossref
Google Scholar
PROCHÁZKA J., FLIMMEL S., ČAMAJ M., BAŠTA M. 2017. Modelling the Number of Road Accidents. Publishing House of the University of Economics, Wrocław. https://doi.org/10.15611/amse.2017.20.29.
Crossref
Google Scholar
RAJPUT H., SOM T., KAR S. 2015. An automated vehicle license plate recognition system. Computer, 48(8): 56-61. https://doi.org/10.1109/MC.2015.244.
Crossref
Google Scholar
SEBEGO M., NAUMANN R.B., RUDD R.A., VOETSCH K., DELLINGER A.M., NDLOVU C. 2011. The impact of alcohol and road traffic policies on crash rates in Botswana, 2004–2011:atime-series analysis. Accident Analysis & Prevention, 70: 33–39. https://doi.org/10.1016/j.aap.2014.02.017.
Crossref
Google Scholar
SHETTY P., SACHIN P.C., KASHYAP V.K., MADI V. 2017. Analysis of road accidents using data mining techniques. Inernational Research Journal of Engineering and Technology, 4. Google Scholar
Statystyka. Portal Polskiej Policji. 2022. Retrieved from https://statystyka.policja.pl/. Google Scholar
SUNNY C.M., NITHYA S., SINSHI K.S., VINODINI V.M.D., LAKSHMI A.K.G., ANJANA S., MANOJKUMAR T.K. 2018. Forecasting of Road Accident in Kerala: A Case Study. International Conference on Data Science and Engineering (ICDSE). https://doi.org/10.1109/ICDSE.2018.8527825.
Crossref
Google Scholar
SZMUKSTA-ZAWADZKA M., ZAWADZKI J. 2009. Forecasting on the basis of Holt-Winters models for complete and incomplete data. Research papers of the Wrocław University of Economics, 38. Google Scholar
TAMBOURATZIS T., SOULIOU D., CHALIKIAS M., GREGORIADES A. 2014. Maximising accuracy and efficiency of traffic accident prediction combining information mining with computational intelligence approaches and decision trees. Journal of Artificial Intelligence and Soft Computing Research, 4(1): 31-42. https://doi.org/10.2478/jaiscr-2014-0023.
Crossref
Google Scholar
Techniki zgłębiania danych (data mining). 2022. StatSoft Polska. Electronic Statistics Textboks. Retrieved from https://www.statsoft.pl/textbook/stathome_stat.html?https%3A%2F%2Fwww.statsoft.pl%2Ftextbook%2Fstdatmin.html. Google Scholar
The Global Status on Road Safety. 2018. World Health Organization. Retrieved from https://www.who.int/publications/i/item/9789241565684. Google Scholar
Top Advantages and Disadvantages of Hadoop 3. 2022. DataFlair. Retrieved from https://data-flair.training/blogs/advantages-and-disadvantages-of-hadoop/. Google Scholar
VILAÇA M., SILVA N., COELHO M.C. 2017. Statistical analysis of the occurrence and severity of crashes involving vulnerable road users. Transportation Research Procedia, 27: 1113-1120. https://doi.org/10.1016/j.trpro.2017.12.113.
Crossref
Google Scholar
WÓJCIK A. 2014. Autoregressive vector models as a response to the critique of multi-equation structural econometric models. Publishing House of the University of Economics, Katowice. Google Scholar
WROBEL M.S. 2017. Application of neural fuzzy systems in chemistry. PhD thesis. University of Silesia, Katowice. Google Scholar
YANG Z., ZHANG W., FENG J. 2022. Predicting multiple types of traffic accident severity with explanations: A multi-task deep learning framework. Safety Science, 146: 105522. https://doi.org/10.1016/j.ssci.2021.105522.
Crossref
Google Scholar
ZHENG Z., WANG C., WANG P., XIONG Y., ZHANG F., LV Y. 2018. Framework for fusing traffic information from social and physical transportation data. PLoS One, 13. https://doi.org/10.1371/journal.pone.0201531.
Crossref
Google Scholar
ZHU L., LU L., ZHANG W., ZHAO Y., SONG M. 2019. Analysis of accident severity for curved roadways based on bayesian networks. Sustainability, 11(8): 2223.
Crossref
Google Scholar
Państwowa Uczelnia Stanisława Staszica w Pile