Impact of information on the number of traffic accidents on the outcome of the forecast

Piotr Gorzelanczyk

Akademia Nauk Stosowanych im. Stanisława Staszica


Abstract

Every year, more and more vehicles appear on the world's roads. This leads to increased traffic on the roads. Road accidents have become a rapidly growing threat. They cause loss of human life and economic assets. This is due to the rapid growth of the world's human population and the very rapid development of motorization. The main problem in forecasting and analyzing data on the number of traffic accidents is the small size of the dataset that can be used for analysis in this regard. And on the other hand, road accidents cause, globally, millions of deaths and injuries annually is their density in time and space. It is worth noting that the pandemic has reduced the number of traffic accidents. However, the value is still very high.

The purpose of the article is to assess the impact of information on the number of traffic accidents on the outcome of the forecast. To this end, using historical statistical data, the forecast of the number of traffic accidents for the following years was determined, and how this variability of the input data affects the value of the average percentage error of the forecast was determined. Based on the study, it can be concluded that a smaller number of input data, historical data on the number of accidents, instead of 32 years, 7 years, makes the determination of the forecast of the number of accidents for subsequent years, is at a satisfactory level, the average absolute percentage error of MAPE less than 7%. The article concludes with the determination of the forecast for future years. It is worth noting that the prevailing pandemic distorts the results obtained.


Keywords:

Forecasting, traffic accident, number of time series elements, mean absolute percentage error MAPE


AL-MADANI H. 2018. Global road fatality trends’ estimations based on country-wise microlevel data. Accident Analysis & Prevention, 111: 297–310. https://doi.org/10.1016/j.aap.2017.11.035
Crossref   Google Scholar

Bank Danych Lokalnych. Główny Urząd Statystyczny. Retrieved from https://bdl.stat.gov.pl/BDL/dane/podgrup/tablica (access 21.01.2022).   Google Scholar

BARTUSKA L., HANZL J., LIZBETINOVA L. 2016. Possibilities of Using the Data for Planning the Cycling Infrastructure. Procedia Engineering, 161: 282–289. https://doi.org/10.1016/j.proeng.2016.08.555
Crossref   Google Scholar

BISWAS A.A., MIA J., MAJUMDER A. 2019. Forecasting the Number of Road Accidents and Casualties using Random Forest Regression in the Context of Bangladesh. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019.
Crossref   Google Scholar

CHUDY-LASKOWSKA K., PISULA T. 2014. Forecast of the Number of Road Accidents in Poland. Logistics, 6: 2710-2721.   Google Scholar

ČUBRANIĆ-DOBRODOLAC M., ŠVADLENKA L., ČIČEVIĆ S., DOBRODOLAC M. 2020. Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach. International Journal of Injury Control and Safety Promotion, 27(2): 156–167. https://doi.org/10.1080/17457300.2019.1690002
Crossref   Google Scholar

DUDEK G. 2013. Exponential smoothing models for short-term power system load forecasting. Energy Mark, 3: 14-19.   Google Scholar

DUTTA B., BARMAN M.P., PATOWARY A.N. 2020. Application of Arima model for forecasting road accident deaths in India. International Journal of Agricultural And Statistical Sciences, 16(2): 607–615.   Google Scholar

FIJOREK K., MRÓZ K., NIEDZIELA K., FIJOREK D. 2010. Forecasting electricity prices on the day-ahead market using data mining methods. Energy Mark, 2010.   Google Scholar

GORZELANCZYK P. 2022. Change in the Mobility of Polish Residents during the COVID-19 Pandemic. Communications – Scientific letters of the University of Zilina, 24(3): A100-111. doi: 10.26552/com.C.2022.3.A100-A111
Crossref   Google Scholar

GORZELANCZYK P. 2023a. Forecasting the number of road accidents in Poland using weather-dependent trend models. Technical Sciences, 26: 57–76. doi: https://doi.org/10.31648/ts.8289
Crossref   Google Scholar

GORZELANCZYK P. 2023b. Application of neural networks to forecast the number of road accidents in provinces in Poland. Heliyon, 9(1). https://doi.org/10.1016/j.heliyon.2022.e12767
Crossref   Google Scholar

GORZELANCZYK P. 2023c. Using neural networks to forecast the number of road accidents in Poland taking into account weather conditions. Results in engineering. In print.
Crossref   Google Scholar

GORZELANCZYK P. 2023d. Forecasting the Number of RoadAccidents in Polaish Provinces Using Trend Models. Applied Sciences, 13(5): 2898. https://doi.org/10.3390/app13052898
Crossref   Google Scholar

GORZELANCZYK P., BAZELA J. 2021. Analysis of pedestrian behavior at crosswalks and evaluation of functioning pedestrian crossings. Transport Problems, 16(4): 135-147.
Crossref   Google Scholar

GORZELAŃCZYK P., BAZELA J., KALINA T., JURKOVIČ M. 2022a. Analysis of pedestrian behavior in the city of Pila. Communications – Scientific Letters of the University of Žilina, 24(2): F14-F26.
Crossref   Google Scholar

GORZELAŃCZYK P., BORKOWSKA A., SZUBERT P., KALINA T., JURKOVIČ M. 2022b. Analysis and evaluation of the effectiveness of safety systems at railroad crossings in Poland. Communications – Scientific Letters of the University of Žilina, 24(3): F46-F61.
Crossref   Google Scholar

GORZELANCZYK P., HUK A. 2022. Road traffic safety : a case study of the Pila poviat in Poland. Scientific Journal of Silesian University of Technology. Series Transport, 114: 31-42.
Crossref   Google Scholar

GORZELANCZYK P., JURKOVIČ M., KALINA T., MOHANTY M. 2022c. Forecasting the road accident rate and the impact of the COVID-19 on its frequency in the polish provinces. Communications – Scientific letters of the University of Zilina, 24(4): A216-231. https://doi.org/10.26552/com.C.2022.4.A216-A231
Crossref   Google Scholar

GORZELANCZYK P., JURKOVIČ M., SKIBIŃSKA J., KALINA T. 2022d. Road safety and the causes of road accidents in Poland. Transport Problems, 17(3): 17-30.
Crossref   Google Scholar

GORZELANCZYK P., KALINA T., JURKOVIČ M. 2022e. Impact of the COVID-19 Pandemic on Car-Sharing in Poland. Communications – Scientific letters of the University of Zilina, 24(4): A172-186. doi: 10.26552/com.C.2022.4.A172-A186
Crossref   Google Scholar

GORZELANCZYK P., PYSZEWSKA D., KALINA T., JURKOVIC M. 2020. Analysis of road traffic safety in the Pila poviat. Scientific Journal of Silesian University of Technology. Series Transport, 107: 33–52. ISSN: 0209-3324. https://doi.org/10.20858/sjsutst.2020.107.3
Crossref   Google Scholar

GORZELANCZYK P., TYLICKI H. 2023. Forecasting the number of road accidents in Poland depending on the day of the week using neural networks. LOGI – Scientific Journal on Transport and Logistics, 14(1): 35-42. https://doi.org/10.2478/logi-2023-0004
Crossref   Google Scholar

HELGASON A. 2016. Fractional integration methods and short Time series: Evidence from asimulation study. Political Analysis, 24(1): 59–68. http://www.jstor.org/stable/24573204
Crossref   Google Scholar

JURKOVIC M., GORZELANCZYK P., KALINA T., JAROS J., MOHANTY M. 2022. Impact of the COVID-19 pandemic on road traffic accident forecasting in Poland and Slovakia. Open Engineering, 12: 578–589. https://doi.org/10.1515/eng-2022-0370
Crossref   Google Scholar

KARLAFTIS M., VLAHOGIANNI E. 2009. Memory properties and fractional integration in trans-portation time-series. Transportation Research Part C Emerging Technologies, 17(4): 444-453. https://doi.org/10.1016/j.trc.2009.03.001
Crossref   Google Scholar

KASHPRUK N. 2010. Comparative Research of Statistical Models and Soft Computing for Identification of Time Series and Forecasting. Opole University of Technology.   Google Scholar

Las losowy. 2022. Wikipedia. Wolna encyklopedia. Retrieved from https://pl.wikipedia.org/wiki/Las_losowy (access 17.04.2022).   Google Scholar

LAVRENZ S., VLAHOGIANNI E., GKRITZA K., KE Y. 2018. Time series modeling in traffic safetyresearch. Accident Analysis & Prevention, 117: 368-380. https://doi.org/10.1016/j.aap.2017.11.030
Crossref   Google Scholar

ŁOBEJKO S. 2015. Time Series Analysis and Forecasting with SAS. Main Business School, Warsaw.   Google Scholar

MAMCZUR M. 2020. Jak działa regresja liniowa? I czy warto ją stosować? Mirosław Mamczur. Blog o data science, AI, uczeniu maszynowym i wizualizacji danych. Retrieved from https://miroslawmamczur.pl/jak-dziala-regresja-liniowa-i-czy-warto-ja-stosowac/ (access 17.04.2022).   Google Scholar

MONEDERO B.D., GIL-ALANAA L.A., MARTÍNEZAA M.C.V. 2021. Road accidents in Spain: Are they persistent? IATSS Research, 45(3): 317-332. https://doi.org/10.1016/j.iatssr.2021.01.002
Crossref   Google Scholar

PIŁATOWSKA M. 2012. The choice of the order of autoregression depending on the parameters of the generating model. Econometrics, 4: 16–35.   Google Scholar

Pojazdy samochodowe i motorowery zarejestrowane w Polsce, stan na 31 grudnia. 2023. Polski Związek Motorowy. Retrieved from https://www.pzpm.org.pl/content/download/2591/10569/file/park%20pojazdow%20PL%201990_2018.pdf (access 21.01.2023).   Google Scholar

PROCHAZKA J., CAMAJ M. 2017. Modelling the number of road accidents of uninsured drivers and their severity. In Proceedings of International Academic Conferences 5408040, International Institute of Social and Economic Sciences, Geneva, Switzerland, 27 June 2017.
Crossref   Google Scholar

PROCHÁZKA J., FLIMMEL S., ČAMAJ M., BAŠTA M. 2017. Modelling the Number of Road Accidents. 20-th AMSE. Applications of Mathematics and Statistics in Economics. International Scientific Conference: Szklarska Poręba, 30 August – 3 September 2017, p. 355-364. https://doi.org/10.15611/amse.2017.20.29
Crossref   Google Scholar

Prognozowanie na podstawie szeregów czasowych. Retrieved from http://pis.rezolwenta.eu.org/Materialy/PiS-W-5.pdf (access 17.04.2022).   Google Scholar

Statystyka – Portal polskiej Policji. Retrieved from https://statystyka.policja.pl/ (access 17.04.2022).   Google Scholar

SUNNY C.M., NITHYA S., SINSHI K.S., VINODINI V.M.D., LAKSHMI A.K.G., ANJANA S., MANOJKUMAR T.K. 2018. Forecasting of Road Accident in Kerala: A Case Study. In Proceedings of the 2018 International Conference on Data Science and Engineering (ICDSE), Kochi, India, 7–9 August 2018. https://doi.org/10.1109/ICDSE.2018.8527825
Crossref   Google Scholar

SZMUKSTA-ZAWADZKA M., ZAWADZKI J. 2009. Forecasting on the Basis of Holt-Winters Models for Complete and Incomplete Data. Research Papers of the Wrocław University of Economics, 38.   Google Scholar

The Global Status on Road Safety. 2018. World Health Organization. Retrieved from https://www.who.int/publications/i/item/9789241565684 (access 17.04.2022).   Google Scholar

WÓJCIK A. 2014. Autoregressive Vector Models as a Response to the Critique of Multi-Equation Structural Econometric Models. Studia Ekonomiczne, 193: 112-128.   Google Scholar

Download


Published
2023-11-21

Cited by

Gorzelanczyk, P. (2023). Impact of information on the number of traffic accidents on the outcome of the forecast. Technical Sciences, 26(26), 219–230. https://doi.org/10.31648/ts.8945

Piotr Gorzelanczyk 
Akademia Nauk Stosowanych im. Stanisława Staszica



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->