Improving the credibility of the extracted position from a vast collection of job offers with machine learning ensemble methods
Paweł Drozda
UWMKrzysztof Ropiak
University of Warmia and Mazury, OlsztynBartosz A. Nowak
University of Warmia and Mazury, OlsztynArkadiusz Talun
Emplocity S.A.Maciej Osowski
Emplocity S.A.Abstract
The main aim of this paper is to evaluate crawlers collecting the job offers from websites. In particular the research is focused on checking the effectiveness of ensemble machine learning methods for the validity of extracted position from the job ads. Moreover, in order to significantly reduce the training time of the algorithms (Random Forests and XGBoost), granularity methods were also tested to significantly reduce the input training dataset. Both methods achieved satisfactory results in accuracy and F1 measures, which exceeded 96%. In addition, granulation reduced the input dataset by more than 99%, and the results obtained were only slightly worse (accuracy between 1% and 5%, F1 between 3% and 8%). Thus, it can be concluded that the considered methods can be used in the evaluation of job web crawlers.
Keywords:
machine learning, web scraping, granularity methods, classificationReferences
ARTIEMJEW P., ROPIAK K. 2021. A Novel Ensemble Model – The Random Granular Reflections. Fundam. Informaticae, 179(2): 183-203.
Crossref
Google Scholar
CHANG Y.J, TSAI K.L., JIANG W.C., LIU M.K. 2023. Content-aware malicious webpage detection using convolutional neural network. In Multimedia Tools and Applications, p. 1-19. https://doi.org/10.1007/s11042-023-15559-8
Crossref
Google Scholar
CHEN T., GUESTRIN C.E. 2016. XGBoost: A Scalable Tree Boosting System. In: KDD’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 785-794. https://doi.org/10.1145/2939672.2939785
Crossref
Google Scholar
DROZDA P., TALUN A., BUKOWSKI L. 2019. Emplobot – design of the system. In Proceedings of the 28th International Workshop on Concurrency, Specification and Programming. Google Scholar
FINN A., KUSHMERICK N., SMYTH B. 2001. Fact or fiction: Content classification for digital libraries. In Proc. Joint DELOS-NSF Workshop, Personalization Recommender Syst. Digit. Libraries. Google Scholar
HASHEMI M. 2020. Web page classification: a survey of perspectives, gaps, and future directions. Multimed Tools Appl, 79: 11921-11945. https://doi.org/10.1007/s11042-019-08373-8
Crossref
Google Scholar
HO T.K. 1995. Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition, 1: 278–282. https://doi.org/10.1109/ICDAR.1995.598994
Crossref
Google Scholar
KAO A., POTEET S. 2006. Natural Language Processing and Text Mining. Springer, Berlin.
Crossref
Google Scholar
KIM Y.S., LEE C.K. 2016. An Empirical Evaluation of Job Classification Using Online Job Advertisements. In AI 2016: Advances in Artificial Intelligence. LNCS, 9992. https://doi.org/10.1007/978-3-319-50127-7_65
Crossref
Google Scholar
LEŚNIEWSKI S. 1916. Podstawy ogólnej teoryi mnogości. I. Prace Polskiego Koła Naukowego w Moskwie, Sekcya Matematyczno-Przyrodnicza, No. 2, Zakład Wyd. Popławski. Eng. tr. in S. Leśniewski. 1992. Collected Works. Kluwer, Dodrecht, p. 129-173. Google Scholar
LOTFI C., SRINIVASAN S., ERTZ M., LATROUS I. 2021. Web Scraping Techniques and Applications: A Literature Review. In R. Pal, P.K. Shukla (eds), SCRS Conference Proceedings on Intelligent Systems. SCRS, India, p. 381-394. https://doi.org/10.52458/978-93-91842-08-6-38
Crossref
Google Scholar
NOWICKI R.K, STARCZEWSKI J.T. 2017. A new method for classification of imprecise data using fuzzy rough fuzzification. Information Sciences, 414. https://doi.org/10.1016/j.ins.2017.05.049.
Crossref
Google Scholar
PARVEZ M.S., TASNEEM K.S.A., RAJENDRA S.S., BODKE K.R. 2018. Analysis of Different Web Data Extraction Techniques. International Conference on Smart City and Emerging Technology (ICSCET), p. 1-7. https://doi.org/10.1109/ICSCET.2018.8537333
Crossref
Google Scholar
PAWLAK Z. 1982. Rough sets. International Journal of Computer & Information Sciences, 11: 341–356.
Crossref
Google Scholar
POLKOWSKI L. 2007. Granulation of knowledge in decision systems: The approach based on rough inclusions. the method and its applications. LNAI, 4585, proceedings for RSEISP 2007: Rough Sets and Intelligent Systems Paradigms, p. 69-79.
Crossref
Google Scholar
QI J. 2012. Random Forest for Bioinformatics. In: Ensemble Machine Learning. Springer, New York. https://doi.org/10.1007/978-1-4419-9326-7_1
Crossref
Google Scholar
RABBI J. 2021. How long does it take to land a new job and how to reduce this time. Retrieved from https://www.linkedin.com/pulse/how-long-does-take-land-new-job-reduce-time-juliana (2.03.2021). Google Scholar
ROPIAK K., ARTIEMJEW P. 2018. A Study in Granular Computing: Homogenous Granulation. 24th International Conference, ICIST 2018, Vilnius, Lithuania, October 4-6, pp. 336-346. Proceedings. https://doi.org/10.1007/978-3-319-99972-2_27
Crossref
Google Scholar
SHETE D., BOJEWAR S., SANGHVI A. 2021. Survey Paper on Web Content Extraction & Classification. 6th International Conference for Convergence in Technology (I2CT), pp. 1-6. https://doi.org/10.1109/I2CT51068.2021.9417947
Crossref
Google Scholar
TALUN A., DROZDA P., BUKOWSKI L., SCHERER R. 2020. FastText and XGBoost ContentBased Classification for Employment Web Scraping. In: Artificial Intelligence and Soft Computing, ICAISC 2020. https://doi.org/10.1007/978-3-030-61534-5_39
Crossref
Google Scholar
TREVISO M., LEE J.-U., JI T., VAN AKEN B., CAO Q., CIOSICI M.R., HASSID M., HEAFIELD K., HOOKER S., RAFFEL C., MARTINS P.H., MARTINS A.F.T., FORDE J.Z., MILDER P., SIMPSON E., SLONIM N., DODGE J., STRUBELL E., BALASUBRAMANIAN N., DERCZYNSKI L., GUREVYCH I., SCHWARTZ R. 2023. Efficient Methods for Natural Language Processing: A Survey. Transactions of the Association for Computational Linguistics, 11: 826-860. https://doi.org/10.1162/tacl_a_00577
Crossref
Google Scholar
ZOU X.-Q., ZHANG P., HUANG C.-Y., BAO X.-G. 2019. Malicious Websites Identification Based on Active-Passive Method. CNCERT 2018. Communications in Computer and Information Science, 970. https://doi.org/10.1007/978-981-13-6621-5_9
Crossref
Google Scholar
UWM
University of Warmia and Mazury, Olsztyn
University of Warmia and Mazury, Olsztyn
Emplocity S.A.
Emplocity S.A.