ANALIZA WPŁYWU WYBRANYCH DODATKÓW SMARÓW LOTNICZYCH NA ICH WŁAŚCIWOŚCI UŻYTKOWE

Karol Bogucki

a:1:{s:5:"en_US";s:23:"Politechnika Warszawska";}


Abstrakt

W artykule przedstawiono typowe środki smarne stosowane w lotnictwie oraz przykłady problemów eksploatacyjnych wynikających m.in. z wprowadzenia zamienników środków smarnych dla starej technologii lotniczej czy nowych dodatków poprawiających smarność powszechnie stosowanego paliwa lotniczego. Wybrany dodatek do paliwa lotniczego
(DCI-4A) i zbadano jego wpływ na wybrany silnik. Przeprowadzono również analizę widma FTIR na obecność wody na przykładzie oleju TN-699. W podsumowaniu przedstawiono wnioski i rekomendacje - wdrażanie nowych środków smarnych i dodatków wymaga w każdym przypadku serii badań laboratoryjnych i stanowiskowych oraz monitorowania procesów tribologicznych w eksploatacji maszyn i urządzeń.


Słowa kluczowe:

fuel, corrosion, friction, exploitation, tribology


ASTM D4054-19. 2020. Standard Practice for Evaluation of New Aviation Turbine Fuels and Fuel Additives. ASTM International, West Conshohocken, Pennsylvania.   Google Scholar

ASTM D7066-04. 2010. Standard Test Method for dimer/trimer of chlorotrifluoroethylene (S-316) Recoverable Oil and Grease and Nonpolar Material by Infrared Determination. ASTM International, West Conshohocken, Pennsylvania.   Google Scholar

BOBZIN K., KALSCHEUER C., THIEX M. 2021. Understanding the Tribological Behavior of Graded (Cr,Al)N+Mo:S in Fluid-Free Friction Regime. Tribology Letters, 69(162). https://doi.org/10.1007/s11249-021-01536-5   Google Scholar

DCI-4A, Corrosion Inhibitors. Retrieved from https://www.https://innospec.com/   Google Scholar

DOKTER A.M., WOUTERSEN S., BAKKER H.J. 2006. Inhomogeneous dynamics in confined water nanodroplets. PNAS, 103(42): 15355-15358. https://doi.org/10.1073/pnas.0603239103   Google Scholar

FERSI A., AYED Y., LAVISSE B., GERMAIN G. 2024. Characterization of friction behavior under cryogenic conditions: Ti–6Al–4V. Tribology International, 195, Article 109588. https://doi.org/10.1016/j.triboint.2024.109588   Google Scholar

GOTI E., MURA A., GAUTIER DI CONFIENGO G.M., CASALEGNO V. 2023. The tribological performance of super-hard Ta:C DLC coatings obtained by low-temperature PVD. Ceramics International, 49(24, part A): 40193-40210. https://doi.org/10.1016/j.ceramint.2023.09.355   Google Scholar

GÓMEZ-BOLÍVAR J., WARBURTON M.P., MUMFORD A.D., MUJICA-ALARCÓN J.F., ANGUILANO L., ONWUKWE U., BARNES J., CHRONOPOULOU M., JU-NAM Y., THORNTON S.F., ROLFE S.A., OJEDA J.J. 2024. Spectroscopic and Microscopic Characterization of Microbial Biofouling on Aircraft Fuel Tanks. Langumuir, 40: 3429-3439. https://doi.org/10.1021/acs.langmuir.3c02803   Google Scholar

KARUPPASAMY P.M., JUNGMOO H., UIHWAN J., KWANGMIN L., HYUNGYIL L. 2021. Study on tribological characteristics of Zr-based BMG via nanoscratch techniques. Wear, 486-487(204067). https://doi.org/10.1016/j.wear.2021.204067   Google Scholar

KYUEUN P., YOUNGJIN K., KYUNG J.L. 2019. Analysis of deuterated water contents using FTIR bending motion. Journal of Radioanalytical and Nuclear Chemistry, 322(2): 487-493. https://doi.org/10.1007/s10967-019-06734-z   Google Scholar

LARSSON E., WESTBROEK R., LECKNER J., JACOBSON S., KASSMAN RUDOLPHI Å. 2021. Grease-lubricated tribological contacts – Influence of graphite, grapheneoxide and reduced graphene oxide as lubricating additives in lithium complex (LiX) – and polypropylene (PP)-thickened greases. Wear, 486-487(204107). https://doi.org/10.1016/j.wear.2021.204107   Google Scholar

LEKŠE N., ŽGAJNAR GOTVAJN A., ZUPANČIČ M., GRIESSLER BULC T. 2024. Oil-based extraction as an efficient method for the quantification of microplastics in environmental samples. Environmental Sciences Europe, 36(68). https://doi.org/10.1186/s12302-024-00898-6   Google Scholar

MILER D., ŠKEC S., KATANA B., ŽEŽELJ D. (2019). An Experimental Study of Composite Plain Bearings: The Influence of Clearance on Friction Coefficient and Temperature. Strojniški vestnik – Journal of Mechanical Engineering, 65(10): 547-556. https://doi.org/10.5545/sv-jme.2019.6108   Google Scholar

NIDZGORSKA A., WITOŚ M., PERCZYŃSKI J., KUŁASZKA A. 2023. Aero-engine as the object of tribological research. Journal of KONBiN, 53(3): 87-127. https://doi.org/10.5604/01.3001.0053.9061   Google Scholar

NO-91-A258-1:2011. 2011. Materiały pędne i smary – Paliwo do turbinowych silników lotniczych – Metody badań. Ministerstwo Obrony Narodowej.   Google Scholar

SAE AS5780D. 2018. Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants. SAE International, Warrendale, Pennsylvania.   Google Scholar

SAE J1899. 2022. Lubricating Oil, Aircraft Piston Engine (Ashless Dispersant). SAE International, Warrendale, Pennsylvania.   Google Scholar

SAE J1966-202010. 2020. Lubricating Oils, Aircraft Piston Engine (Non-Dispersant Mineral Oil). SAE International, Warrendale, Pennsylvania.   Google Scholar

SANGUINITO S., CVETIC P., GOODMAN A., KUTCHKO B., NATESAKHAWAT S. 2020. Characterizing pore-scale geochemical alterations in eagle ford and barnett shale from exposure to hydraulic fracturing fluid and CO2/H2O. Energy & Fuels, 35(1): 583–598. https://doi.org/10.1021/acs.energyfuels.0c02496   Google Scholar

Turbonycoil 699 Technical data sheet. Retrieved from www.nyco-group.com   Google Scholar

VASYLIEVA A., DOROSHENKO I., VASKIVSKYI Y., CHERNOLEVSKA Y., POGORELOV V. 2018. FTIR study of condensed water structure. Journal of Molecular Structure, 1167: 232-238. https://doi.org/10.1016/j.molstruc.2018.05.002   Google Scholar


Opublikowane
17-09-2024

Cited By /
Share

Bogucki, K. (2024). ANALIZA WPŁYWU WYBRANYCH DODATKÓW SMARÓW LOTNICZYCH NA ICH WŁAŚCIWOŚCI UŻYTKOWE. Technical Sciences, 27(27), 161–173. https://doi.org/10.31648/ts.10564

Karol Bogucki 
a:1:{s:5:"en_US";s:23:"Politechnika Warszawska";}



Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.





-->