Operation and challenges of biogas technology: A fundamental overview
Agnieszka Pilarska
a:1:{s:5:"en_US";s:88:"Poznań Uniwersity of Life Sciences, Faculty of Environmental and Mechanical Engineering";}Krzysztof Pilarski
Abstrakt
The modern world is facing a huge energy crisis related to the depletion of conventional energy sources. Therefore, obtaining energy from alternative sources is sparking increasing interest, expressed by both scientists and entrepreneurs. One such source is biogas, which has great potential to become, along with wind and solar energy, an important renewable energy source (RES). This paper presents the technical and practical aspects of biogas production (mainly agricultural) and extensively discusses the anaerobic digestion (AD) process. The global development of biogas plants and the operation of the most important types of biogas plants are also discussed. In the conclusion section, the benefits of biogas technology development are provided and explained, as well as the challenges and barriers hindering the intensification of biogas plant construction despite the potential and access to adequate resources and waste materials.
Słowa kluczowe:
anaerobic digestion, organic waste, biogas composition, digestate properties, biogas plant operation, achievements and challengesBibliografia
Bąkowski, K. 2020. Sieci i instalacje gazowe. Poradnik projektowania, budowy i eksploatacji. Wydawnictwo Naukowe PWN, Warszawa, ISBN: 978-83-01-19805-3. Google Scholar
Biernat, K. 2010. Biopaliwa-definicje i wymagania obowiązujące w Unii Europejskiej. Czysta Energia, 10, 25–28. Google Scholar
Bharathiraja, B., Sudharsanaa, T., Bharghavi, A., Jayamuthunagai, J. 2016. Praveenkumar, R. Biohydrogen and Biogas – An overview on feedstocks and enhancement process. Fuel, 185, 810–828. Google Scholar
Chen, J.L., Ortiz, R., Steele, T.W.J., Stuckey, D.C. 2014. Toxicants inhibiting anaerobic digestion: A review. Biotechnology Advances, 32, 1523–1534. Google Scholar
Colonna, P. 2011. Biomass, biogas and biofuels. General Nuclear Review (Revue Générale Nucléaire), 3, 58–64 Google Scholar
Gadirli, G., Pilarska, A.A., Dach, J., Pilarski, K., Kolasa-Więcek, A., Borowiak, K. 2024. Fundamentals, operation and global prospects for the development of biogas plants – A Review. Energies, 17, 568. Google Scholar
Häfner, F., Hartung, J., Möller, K. 2022. Digestate composition afecting N fertiliser value and C mineralisation. Waste and Biomass Valorization, 13, 3445–3462. Google Scholar
Igliński, B., Piechota, G., Iwański, P., Skarzatek, M., Pilarski, G. 2020. 15 Years of Polish agricultural biogas plants: their history, current status, biogas potential and perspectives. Clean Technologies and Environmental Policy, 22(1), 281–307. Google Scholar
Koc-Jurczyk, J., Jurczyk, Ł., Wanowicz, D. 2020. Wykorzystywanie komunalnych osadów ściekowych jako źródła energii elektrycznej. Polish Journal for Sustainable Development, 24(2), 54–62. Google Scholar
Korbag, I., Omer, S.M.S., Boghazala, H., Abusasiyah, M.A.A. 2020. Recent advantaces of biogas production and future perspective. Biogas – recent advances and integrated approaches, 1,3–42, DOI: 10.5772/intechopen.93231. Google Scholar
Kwaśny J., Banach M., Kowalski Z. 2012. Przegląd technologii produkcji biogazu różnego pochodzenia. Czasopismo techniczne. Chemia, 109(2), 83–102. Google Scholar
Lima, D., Appleyby, G., Li, L. 2023. A scoping review of options for increasing biogas production from sewage sludge: challenges and opportunities for enhancing energy self-sufficiency in wastewater treatment plants. Energies, 16, 2369. Google Scholar
Masłoń, A., Czarnota, J., Szaja, A., Szulżyk-Cieplak, J., Łagód, G. 2020. The enhacement of energy efficiency in a wastewater treatment plant through sustainable biogas use: case study from Poland. Energies, 13, 6056. Google Scholar
Montusiewicz, A. 2012. Współfermentacja osadów ściekowych i wybranych kosubstratów jako metoda efektywnej biometanizacji. Polska Akademia Nauk, Komitet Inżynierii Środowiska, Monografie vol. 98, Lublin, Poland. Google Scholar
O’Connor, S., Ehimen, E., Pillai, S.C., Black, A., Tormey, D., Barlett, J. 2021. Biogas production from small-scale anaerobic digestion plants on European farms. Renewable and Sustainable Energy Reviews, 139, 110580. Google Scholar
Pilarska, A.A. 2018. Anaerobic co-digestion of waste wafers from confectionery production with sewage sludge. Polish Journal of Environmental Studies, 27(1), 237–245. Google Scholar
Pilarska, A.A., Pilarski, K., Waliszewska, B., Zborowska, M., Witaszek, K., Waliszewska, H., Kolasiński, M., Szwarc–Rzepka, K. 2019a. Evaluation of bio-methane yields for high-energy organic waste and sewage sludge: A pilot-scale study for a wastewater treatment plant. Environmental Engineering Management Journal, 18, 2019–2030. Google Scholar
Pilarska, A.A., Pilarski, K., Witaszek, K., Waliszewska, H., Zborowska, M., Waliszewska, B., Kolasiński, M., Szwarc-Rzepka, K. 2016. Treatment of dairy waste by anaerobic digestion with sewage sludge. Ecol. Chem. Eng. S, 23, 99–115 Google Scholar
Pilarska, A.A., Pilarski, K., Wolna-Maruwka, A., Boniecki, P., Zaborowicz, M. 2019b. Use of confectionery waste in biogas production by the AD process. Molecules, 24, 37. Google Scholar
Pilarski, K., Pilarska, A.A., Kolasa-Więcek, A., Suszanowicz, D. 2023. An agricultural biogas plant as a thermodynamic system: A study of efficiency in the transformation from primary to secondary energy. Energies, 16, 7398. Google Scholar
Register. 2018. of Energy companies producing agricultural biogas. www.kowr.gov.pl/uploads/pliki/oze/biogaz/7.%20Rejestr%20wytw%C3%B3rc%C3%B3w%20biogazu%20rolniczego%20z%20dni a%2005.01.2018%20r.pdf Google Scholar
Ryckebosch, E., Drouillon, M., Vervaeren, H. 2011. Techniques for transformation of biogas to biomethane. Biomass and bioenergy, 35(5), 1633–1645. Google Scholar
Rogowska, D., Berdechowski, K. 2013. Ocena wpływu sposobu alokacji emisji w procesie produkcji biopaliwa na wartość emisji gazów cieplarnianych. Nafta–Gaz, 69(3), 226–234. Google Scholar
Schattauer, A., Weiland, P. 2005. Basic knowledge of anaerobic digestion. [in] Biogas – production and use. Institut für Energetik und Umwelt, GmbH: Leipzig, Germany, pp. 5–22. Google Scholar
Szczyrba, P., Masłoń, A., Czarnota, J., Olszewski, K. 2020. Analiza gospodarki osadowej Google Scholar
i biogazowo-energetycznej w oczyszczalni ścieków w Opolu. Ecological Engineering, 21(2), 26–34. Google Scholar
Wang, P., Wang, H., Qiu, Y., Ren, L., Jiang, B. 2018. Microbial characteristics in anaerobic digestion process of food waste for methane production–A review. Bioresource Technology, 248, 29–36. Google Scholar
Worwąg, M., Bień, J., Zawieja, I. 2010. Zespoły mikroorganizmów w procesach beztlenowej stabilizacji osadów. Proceedings of ECOpole, 4(2), 515–522. Google Scholar
Zapałowska, A., Gacek, T. 2019. Ekonomiczne aspekty pozyskiwania i wykorzystania biogazu. Polish Journal for Sustainable Development, 23(2), 81–89. Google Scholar
Zdebik, D., Głodniok, M., & Korczak, K. 2010. Analiza możliwości wykorzystania biogazu do produkcji ciepła i energii elektrycznej na przykładzie oczyszczalni ścieków w Rybniku. Prace Naukowe GIG. Górnictwo i Środowisko/Główny Instytut Górnictwa, 3, 87–97. Google Scholar
Żygadło M., Madejski R., 2016, The conversion of biomas into energy in farm biogas plant. Archives of Waste Management and Environmental Protection, 18(2), 55–66. Google Scholar
a:1:{s:5:"en_US";s:88:"Poznań Uniwersity of Life Sciences, Faculty of Environmental and Mechanical Engineering";}