The effect of sample displacement on x-ray diffraction results in Bragg-Brentano geometry

Experimental Analysis of Vertical Sample Shift in Bragg-Brentano Geometry

Karol Tyc

a:1:{s:5:"en_US";s:62:"University of Warmia and Mazury, Faculty of Technical Sciences";}


Abstrakt

The aim of the study was to investigate the effect of vertical displacement of the sample on the results of X-ray diffraction (XRD) in Bragg-Brentano geometry. Measurements were performed on an S275JR steel sample using a Phaser D2 diffractometer (Cu Kα, λ = 1,541874 Å) with a step size of 2θ = 0,01°. The shifts in the positions of the 2θ peaks and half-widths (FWHM) were analyzed, and the lattice constant was determined using the Nelson-Riley method, the crystallite size using the Scherrer method, and the parameters using the Williamson-Hall method. A vertical displacement of 1 mm produced an approximately 0,8° shift of the 110 peak. The Nelson-Riley method was used to determine the effect of these errors on the lattice constant (2,864-2,868 [Å]). The Scherrer method determined the size of the 110-260 [Å] order crystallites (the largest for the 110 peak), while the W-H method indicated significant lattice distortion values (approx. 0.26-0.30%). The results emphasize the need for accurate sample positioning, as shifts can lead to erroneous results and analytical conclusions.


Słowa kluczowe:

X-ray diffraction (XRD), Bragg-Brentano geometry, sample displacement, XRD geometric errors


HARRINGTON G. F., SANTISO J., 2021, Back to Basics tutorial: X ray diffraction of thin films, Journal of Electroceramics 47:141–163   Google Scholar

CULLITY B.D., STOCK S.R., 2014, Elements of X-Ray Diffraction, Pearson   Google Scholar

CLINE J. P., MENDENHALL M. H., BLACK D., WINDOVER D., HENINS A., 2015, The Optics and Alignment of the Divergent Beam Laboratory X-ray Powder Diffractometer and its Calibration Using NIST Standard Reference Materials, Journal of Research of the National Institute of Standards and Technology, 120   Google Scholar

KRIEGNER D., MATEJ Z., KUZEL R., HOLY V., 2015, Powder diffraction in Bragg–Brentano geometry with straight linear detectors, Journal of Applied Crystallography, 48, 613-618   Google Scholar

NELSON J. B., RILEY D. P., 1944, An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals, Proceedings of the Physical Society, 57, 3   Google Scholar

LIPSON H., 2001, The study of metals and alloys by X-Ray powder diffraction methods, University College Cardiff Press   Google Scholar

SCHERRER P., 1918, Bestimmung der Größe und der innerenStruktur von KolloidteilchenmittelsRöntgenstrahlen, Nachrichten von der Gesellschaft der WissenschaftenzuGöttingen. Mathematisch-PhysikalischeKlasse, 98-100   Google Scholar

NWAOKAFOR P., OKEOMA K. B., ECHENDU O. K., 2021, X-ray Diffraction Analysis of a Class of AlMgCu Alloy Using Williamson–Hall and Scherrer Methods, Metallography, Microstructure, and Analysis, 10, 727–735   Google Scholar

WILLIAMSON G. K., HALL W. H., 1953, X-ray line broadening from filed aluminium and wolfram, Acta Metall, 1, 22   Google Scholar

PELLEG J., ELISH E., MOGILYANSKI D., 2005, Evaluation of average domain size and microstrain in a silicide film by the Williamson-Hall method, Metall Mater Trans A 36, 3187–3194.   Google Scholar


Opublikowane
04-12-2025

Cited By /
Share

Karol Tyc. (2025). The effect of sample displacement on x-ray diffraction results in Bragg-Brentano geometry: Experimental Analysis of Vertical Sample Shift in Bragg-Brentano Geometry. Technical Sciences. https://doi.org/10.31648/ts.11953

Karol Tyc 
a:1:{s:5:"en_US";s:62:"University of Warmia and Mazury, Faculty of Technical Sciences";}



Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.





-->