The comparison of ionospheric trough signatures derived from GNSS data – a geomagnetic storm case study.
Rafal Sieradzki
a:1:{s:5:"en_US";s:42:"University of Warmia and Mazury in Olsztyn";}Abstrakt
Nowadays, observations from the Global Navigation Satellite System (GNSS) are one of the most valuable datasets used for ionosphere remote sensing. One of the fields of such studies is to detect and describe the different-scale ionospheric effects, including the main ionospheric trough. This phenomenon is recognised as a large-scale depletion in plasma density with sharp gradients at the edges, observed at the boundary between the high- and middle-latitude ionosphere. Due to the connection between the trough and auroral oval, it exhibits a high dependence on the geomagnetic activity. This work presents a cross-evaluation of ionospheric trough detection using various GNSS-based methods. The assessment utilises multi-station geometry-free (GF) linear combination (LC) GNSS data, converted to vertical directions, and global ionospheric maps. In the former case, data from several dozen stations located in the Northern Hemisphere are used to provide a spatial view of the analysed ionospheric phenomenon. The study focuses on the patterns of trough during high geomagnetic activity that occurred in March 2012. The results confirm that the network-derived GF LC GNSS time series, scaled to a vertical ionospheric path, can be successfully used for ionospheric trough monitoring. Such datasets provide complex signatures of trough during two selected cases corresponding to different phases of the storm. In contrast, the results derived from the global ionospheric maps suffer from generalisation, the level of which depends on the generating algorithm. The comparison of such products provided by UPC and ESA reveals the outperformance of the former, characterised by RMS values at the level 1.7-1.8 TECu. In contrast, the patterns of ionospheric trough in the ESA product are significantly deteriorated, even to 4.4 TECu RMS.
Słowa kluczowe:
GNSS, ionospheric trough, global ionospheric maps, geomagnetic stormInstytucje finansujące
Bibliografia
Aa E., Zou S., Erickson P.J., Zhang S., Liu S. 2020. Statistical Analysis of the Main Ionospheric Trough Using Swarm in Situ Measurements. Journal of Geophysical Research: Space Physics, 125: e2019JA027583. https://doi.org/10.1029/2019JA027583
Crossref
Google Scholar
Banville S., Sieradzki R., Hoque M., Wezka K., Hadas T. 2017. On the estimation of higher-order ionospheric effects in precise point positioning. GPS Solutions, 21: 1817-1828. https://doi.org/10.1007/s10291-017-0655-0
Crossref
Google Scholar
Bowline M.D., Sojka J.J., Schunk R.W. 1996. Relationship of theoretical patch climatology to polar cap patch observations. Radio Science, 31: 635-644. https://doi.org/10.1029/96RS00236
Crossref
Google Scholar
Branzanti M., Colosimo G., Crespi M., Mazzoni A. 2013. GPS Near-Real-Time Coseismic Displacements for the Great Tohoku-oki Earthquake. IEEE Geosci. Remote Sensing Letters, 10: 372-376. https://doi.org/10.1109/LGRS.2012.2207704
Crossref
Google Scholar
Feltens J. 2007. Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. Space Weather, 5: 2006SW000294. https://doi.org/10.1029/2006SW000294
Crossref
Google Scholar
Foster J.C., Burke W.J. 2002. SAPS: A new categorization for sub-auroral electric fields. Eos, Transactions American Geophysical Union, 83: 393-394. https://doi.org/10.1029/2002EO000289
Crossref
Google Scholar
He M., Liu L., Wan W., Zhao B. 2011. A study on the nighttime midlatitude ionospheric trough. Journal of Geophysical Research: Space Physics, 116. https://doi.org/10.1029/2010JA016252
Crossref
Google Scholar
Hernández-Pajares M., Juan J.M., Sanz J., Aragón-Àngel À., García-Rigo A., Salazar D., Escudero M. 2011. The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. Journal of Geodesy, 85: 887-907. https://doi.org/10.1007/s00190-011-0508-5
Crossref
Google Scholar
Horvath I., Essex E.A. 2003. The southern-hemisphere mid-latitude day-time and night-time trough at low-sunspot numbers. Journal of Atmospheric and Solar-Terrestrial Physics, 65: 917-940. https://doi.org/10.1016/S1364-6826(03)00113-5
Crossref
Google Scholar
Ishida T., Ogawa Y., Kadokura A., Hiraki Y., Häggström I. 2014. Seasonal variation and solar activity dependence of the quiet-time ionospheric trough. Journal of Geophysical Research: Space Physics, 119: 6774-6783. https://doi.org/10.1002/2014JA019996
Crossref
Google Scholar
Jakowski N., Mayer C., Hoque M.M., Wilken V. 2011. Total electron content models and their use in ionosphere monitoring. Radio Science, 46: 2010RS004620. https://doi.org/10.1029/2010RS004620
Crossref
Google Scholar
Komjathy A., Sparks L., Wilson B.D., Mannucci A.J. 2005. Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Science, 40: 2005RS003279. https://doi.org/10.1029/2005RS003279
Crossref
Google Scholar
Krankowski A., Shagimuratov I.I., Ephishov I.I., Krypiak-Gregorczyk A., Yakimova G. 2009. The occurrence of the mid-latitude ionospheric trough in GPS-TEC measurements. Advences in Space Research, 43: 1721-1731. https://doi.org/10.1016/j.asr.2008.05.014
Crossref
Google Scholar
Krypiak-Gregorczyk, A., Wielgosz, P., 2018. Carrier phase bias estimation of geometry-free linear combination of GNSS signals for ionospheric TEC modeling. GPS Solutions, 22: 45. https://doi.org/10.1007/s10291-018-0711-4
Crossref
Google Scholar
Kullen A., Brittnacher M., Cumnock J.A., Blomberg L.G. 2002. Solar wind dependence of the occurrence and motion of polar auroral arcs: A statistical study. Journal of Geophysical Research: Space Physics, 107. https://doi.org/10.1029/2002JA009245
Crossref
Google Scholar
Lee I.T., Wang W., Liu J.Y., Chen C.Y., Lin C.H. 2011. The ionospheric midlatitude trough observed by FORMOSAT-3/COSMIC during solar minimum. Journal of Geophysical Research: Space Physics, 116. https://doi.org/10.1029/2010JA015544
Crossref
Google Scholar
Li Z., Yuan Y., Wang N., Hernandez-Pajares M., Huo X. 2015. SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. Journal of Geodesy, 89: 331-345. https://doi.org/10.1007/s00190-014-0778-9
Crossref
Google Scholar
Lubyk K., Hoque M.M., Stolle C. 2022. Evaluation of the Mid-Latitude Ionospheric trough Using GRACE Data. Remote Sensing, 14: 4384. https://doi.org/10.3390/rs14174384
Crossref
Google Scholar
Nilsson H., Sergienko T.I., Ebihara Y., Yamauchi M. 2005. Quiet-time mid-latitude trough: influence of convection, field-aligned currents and proton precipitation. Annales Geophysicae, 23: 3277-3288. https://doi.org/10.5194/angeo-23-3277-2005
Crossref
Google Scholar
Ning Y., Tang J. 2018. Study of ionospheric disturbances over the China mid- and low-latitude region with GPS observations. Annales Geophysicae, 36: 81-89. https://doi.org/10.5194/angeo-36-81-2018
Crossref
Google Scholar
Orús R., Hernández-Pajares M., Juan J.M., Sanz J. 2005. Improvement of global ionospheric VTEC maps by using kriging interpolation technique. Journal of Atmospheric and Solar-Terraetrial Physics, 67: 1598-1609. https://doi.org/10.1016/j.jastp.2005.07.017
Crossref
Google Scholar
Paziewski J. 2015. Precise GNSS single epoch positioning with multiple receiver configuration for medium-length baselines: methodology and performance analysis. Measurement Science of Technology, 26: 035002. https://doi.org/10.1088/0957-0233/26/3/035002
Crossref
Google Scholar
Perevalova N.P., Romanova E.B., Tashchilin A.V. 2020. Detection of high-latitude ionospheric structures using GNSS. Journal of Atmospheric and Solar-Terrestrial Physics, 207: 105335. https://doi.org/10.1016/j.jastp.2020.105335
Crossref
Google Scholar
PrikryL, P., Jayachandran P.T., Chadwick R., Kelly T.D. 2015. Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Annales Geophysicae, 33: 531-545. https://doi.org/10.5194/angeo-33-531-2015
Crossref
Google Scholar
Pryse S.E., Kersley L., Malan D., Bishop G.J. 2006. Parameterization of the main ionospheric trough in the European sector. Radio Science, 41: 2005RS003364. https://doi.org/10.1029/2005RS003364
Crossref
Google Scholar
Ren X., Zhang X., Xie W., Zhang K., Yuan Y., Li X. 2016. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS. Scientific Reports, 6: 33499. https://doi.org/10.1038/srep33499
Crossref
Google Scholar
Rodger A. 2008. The Mid-Latitude Trough-Revisited. In: P.M. Kintner, A.J. Coster, T. Fuller- Google Scholar
-Rowell, A.J. Mannucci, M. Mendillo, R. Heelis (Eds.), Geophysical Monograph Series. American Geophysical Union, Washington, D. C., 25-33. https://doi.org/10.1029/181GM04
Crossref
Google Scholar
Royersmith B., Knipp D., Starr G., Morton Y.J., Mrak S. Wu, Q., 2025. Robust Global Analysis of Mid-Latitude Ionospheric Trough Morphology. Journal of Geophysical Research: Space Physics, 130: e2024JA033605. https://doi.org/10.1029/2024JA033605
Crossref
Google Scholar
Sieradzki R. 2015. An analysis of selected aspects of irregularities oval monitoring using GNSS observations. Journal of Atmospheric and Solar-Terrestial Physics, 129: 87-98. https://doi.org/10.1016/j.jastp.2015.04.017
Crossref
Google Scholar
Sieradzki R., Paziewski J. 2019. GNSS-based analysis of high latitude ionospheric response on a sequence of geomagnetic storms performed with ROTI and a new relative STEC indicator. Journal of Space Weather and Space Climate, 9: A5. https://doi.org/10.1051/swsc/2019001
Crossref
Google Scholar
Tsagouri I., Belehaki A. 2015. Ionospheric forecasts for the European region for space weather applications. Journal of Space Weather and Space Climate, 5: A9. https://doi.org/10.1051/swsc/2015010
Crossref
Google Scholar
Tsurutani B.T., Echer E., Shibata K., Verkhoglyadova O.P., Mannucci A.J., Gonzalez W.D., Kozyra J.U., Pätzold M. 2014. The interplanetary causes of geomagnetic activity during the 7–17 March 2012 interval: a CAWSES II overview. Journal of Space Weather and Space Climate, 4: A02. https://doi.org/10.1051/swsc/2013056
Crossref
Google Scholar
Wautelet G., Warnant R. 2014. Climatological study of ionospheric irregularities over the European mid-latitude sector with GPS. Journal of Geodesy, 88: 223-240. https://doi.org/10.1007/s00190-013-0678-4
Crossref
Google Scholar
Werner S., Prölss G.W. 1997. The position of the ionospheric trough as a function of local time and magnetic activity. Advences in Space Research, 20: 1717-1722. https://doi.org/10.1016/S0273-1177(97)00578-4
Crossref
Google Scholar
a:1:{s:5:"en_US";s:42:"University of Warmia and Mazury in Olsztyn";}

