Influence of gas detonation spraying parameters on the geometrical structure of Fe-Al intermetallic protective coatings
Tomasz Chrostek
http://orcid.org/0000-0002-6516-8192
Mirosław Bramowicz
http://orcid.org/0000-0002-7716-544X
Kazimierz Rychlik
Adam Wojtkowiak
Cezary Senderowski
http://orcid.org/0000-0002-0331-3702
Abstrakt
The paper presents the results of an analysis of the geometrical structure of Fe-Al intermetallic protective coatings sprayed under specified gun detonation spraying (GDS) conditions. Two barrel lengths, two powder injection positions (PIP) at the moment of spark detonation, and two numbers of GDS shots with 6.66 Hz frequency were applied as variable parameters in the GDS process.
Surface profile measurements were conducted by contact profilometry with the use of the TOPO-01 system and the Mitutoyo SJ 210 profilometer. The measured parameters were used to analyze surface topography in two-dimensional (2D) and three-dimensional (3D) systems. It was assumed that roughness can be regarded as a non-stationary parameter of variance in surface amplitude which is highly dependent on the sampling rate and spraying distance. Therefore, changes in surface amplitude parameters and functional properties were analyzed across segments with a length (ln) of 1.25, 4 and 12.5 mm. The development of the geometric structure of the surface was analyzed with the RMS (Root Mean Square) fractal method, and the geometric structure of the surface stretched by several orders of magnitude was evaluated based on the correlation between roughness (Rq), segment length (ln) and fractal dimension (D). The RMS method and the calculated fractal dimension (D) supported the characterization of the geometric structure of intermetallic Fe-Al protective coatings subjected to GDS under the specified process conditions based on the roughness profiles of surface segments with a different length (ln).
Słowa kluczowe:
GDS, Detonation Gas Spraying, Fe-Al, intermetallic alloys, fractal analysis, RMSBibliografia
AUE J.-J. 1997. Fractals and fracture: structure-property relationship of highly porous ceramics. Dissertations of University of Groningen.
BERRY M.V, HANNAY J.H. 1978. Topography of Random Surfaces. Nature, 271: 573.
BHUSHAN B. 1999. Introduction – Measurement Techniques and Applications. Handbook of Micro/Nanotribology. Ed. Bharat Bhushan. CRC Press LLC, Boca Raton.
BOJAR Z., KOMOREK Z., DUREJKO T. 1996. Struktura i właściwości intermetalicznych powłok ochronnych otrzymywanych metodą detonacyjną. Solidification of Metals and Alloys, 27: 115-119.
BYSTRZYCKI J., VARIN R.A, BOJAR Z. 1996. Postępy w badaniach stopów na bazie uporządkowanych faz międzymetalicznych z udziałem aluminium. Inżynieria Materiałowa, 5: 137-149.
CINCA N., GUILEMANY J.M. 2012. Thermal spraying of transition metal aluminides: An overview. Intermetallics, 24: 60-72.
CHEN Y., LIANG X., WEI S., LIU Y., XU B. 2009. Heat treatment induced intermetallic phase transition of arc-sprayed coating prepared by the wires combination of aluminum-cathode and steel-anode. Applied Surface Science, 255(19): 8299-8304.
CHROSTEK T., RYCHLIK K., BRAMOWICZ M., SENDEROWSKI C. 2018. Functional and fractal properties of Fe-Al coatings after gas detonation spraying (GDS). Archives of Metallurgy and Materials, 63(4): 1991-1997.
HEJWOWSKI T. 2013. Nowoczesne powłoki nakładane cieplnie odporne na zużycie ścierne i erozyjne. Monografie, Politechnika Lubelska, Lublin.
JASIONOWSKI R., PRZETAKIEWICZ W., ZASADA D. 2011. The effect of structure on the cavitational wear of Fe-Al intermetallic phase-based alloys with cubic lattice. Archives of Foundry Engineering, 11(2): 97-102.
JASIONOWSKI R., BRYLL K., GRABIAN J. 2012. Badanie właściwości tribologicznych intermetali. Archives of Foundry Engineering, 12: 87-90.
MAINSAH E., GREENWOOD J.A., CHETWYND D.G. 2001. Metrology and Properties of Engineering Surfaces. Kluwer Academic Publishers.
MUŠALEK R., KOVAŘIK O., SKIBA T., HAUŠILD P., KARLIK M., COLMENARES-ANGULO J. 2010. Fatigue properties of Fe-Al intermetallic coatings prepared by plasma spraying. Intermetallics, 18: 1415-1418.
NIEWIELKI G., JABŁOŃSKA M. 2007. Charakterystyka i zastosowanie intermetali z układu Fe Al. Inżynieria Materiałowa, 2: 43-47.
SAYLES R.S., THOMAS T.R. 1978. Surface Topography as a Nonstationary Random Process. Nature, 271: 431–434.
SCHNEIBEL J.H., RITCHIE R.O., KRUZIC J.J., TORTORELLI P.F. 2005. Optimization of Mo-Si-B Intermetallic Alloys. Metallurgical and Materials Transaction A, 36(3): 525-531.
SENDEROWSKI C., ASTACHOV E., BOJAR Z., BORISOV Y. 2011. Elementarne mechanizmy formowania powłoki intermetalicznej Fe-Al podczas natryskiwania gazodetonacyjnego. Inżynieria Materiałowa, 4: 719-723.
SENDEROWSKI C. 2015. Żelazowo-aluminiowe intermetaliczne systemy powłokowe uzyskiwane z naddźwiękowego strumienia metalizacyjnego. Bel Studio Sp. z o.o., Warszawa.
SZULC T. 2013. Notatki z historii natryskiwania termicznego. Przegląd Spawalnictwa, 85(6): 76-83.
XU B., ZHU Z., MA S., ZHANG W., LIU W. 2004. Sliding wear behavior of Fe-Al and Fe-Al/WC coatings prepared by high velocity arc spraying. Wear, 257(11): 1089-1095.
YAN D., YANG Y., DONG Y., CHEN X., WANG L., ZHANG J. 2012. Phase transitions of plasma sprayed FeAl intermetallic coating during corrosion in molten zinc at 640°C. Intermetallics, 22: 160-165.
ŻÓRAWSKI W. 2010. Właściwości powłok natryskanych plazmowo i HVOF. Tribologia, 6: 319-327.