Influence of plastic deformation on electrochemical properties of X5CrNi18-10 steel
Abstrakt
The purpose of the work was to determine the effect of plastic deformation on the electrochemical properties of X5CrNi18-10 steel. The tested material belongs to the group of stainless steels with low carbon content and is used in many industries due to high corrosion resistance. In most applications of the tested material, it is formed into complicated shapes and exposed to aggressive environments. An example can be applications in medicine (implants) as well as in civil engineering and nuclear energy The literature on the subject shows a different impact of deformation on anti-corrosion properties. Samples with 5 different deformations were obtained. Electrochemical direct electrical current and alternating electrical current tests were performed for the obtained materials. The tests were carried out in a 1 molar sodium chloride solution. Studies have shown an increase in corrosion resistance of samples with increasing strain in the tested strain ranges.
Słowa kluczowe:
corrosion, electrochemistry, stainless steel, impendence spectroscopy, Tafel plotsBibliografia
Alvarez K., Sato K., Hyun S.K., Nakajima H., Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications, Materials Science and Engineering C, (2008), 28, 44-50. Google Scholar
Bernstein I. M., Handbook of stainless steels, Nowy Jork 1977, NY: McGraw-Hill. Google Scholar
Bassioni G., Korin A., El – Din Salama A., Stainless Steel as a Source of Potential Hazard due to Metal Leaching into Beverages, International Journal of Electrochemical Science, 10, (2015), 3792 – 3802. Google Scholar
Freirea L., Carmezima M.J., Ferreiraa M.G.S., Montemor M.F., The electrochemical behavior of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chloride, Electrochimica Acta, (2011), 56, 5280–5289. Google Scholar
Kowalewski Z.L, Szymczak T., Badania wytrzymałościowe połączeń spawanych w elementach wybranych konstrukcji, XXIV Seminarium NIENISZCZĄCE BADANIA MATERIAŁÓW, Zakopane, (2018), 21 – 50. Google Scholar
Kułakowski M., Rokosz K., Stopowe stale austenityczne, ferrytyczne i duplex używane w transporcie, Autobusy, 7-8, (2017), 357 – 362. Google Scholar
Nazarov A., Vivier V., Vucko F., Thierry D., Effect of Tensile Stress on the Passivity Breakdown and Repassivation of AISI 304 Stainless Steel: A Scanning Kelvin Probe and Scanning Electrochemical Microscopy Study, Journal of The Electrochemical Society, (2019), 166, pp.C3207-C3219. Google Scholar
PN-EN 10088-1:2007, Stale odporne na korozję część pierwsza - Gatunki stali odpornych na korozję. Google Scholar
PN-EN ISO 6892-1, Metale. Próba rozciągania. Część 1: Metoda badania w temperaturze pokojowej Google Scholar
Rutkowska – Gorczyca M., Podrez – Radziszewska M., Kajtoch J., Corosion resistance and microstructure of steel AISI 316L, Metalurgy and foundry eingeniering, 35, (2009), 35 – 43 Google Scholar
Ryan G, Pandit A, Apatsidis D.P., Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, (2006), 27, 2651-2670. Google Scholar
Santonen T., Stockmann-Juvala H., Zitting A., Review on toxicity of stainless steel, Finnish Institute of Occupational Health, Helsinki, Finland 2010. Google Scholar
Stress Corrosion Cracking in Light Water Reactors: Good Practices and Lessons Learned, International Atomic Energy Agency, Vienna, 2011 Google Scholar
Tiamiyu A. A., Eduok U., Szpunar J. A., Odeshi A. G., Corrosion behavior of metastable AISI 321 austenitic stainless steel:Investigating the effect of grain size and prior plastic deformation on its degradation pattern in saline media, Scientific Reports, 9, (2019), 1 – 18. Google Scholar
Venkatraman M., Pavitra K., Jana V., Kachwala T., Manufacturing and critical applications of stainless steel- An Overview, Advanced Materials Research,794, (2013), 163-173. Google Scholar
Wciślik W., Kossakowski P., Sokołowski P., Stainless steel in building structures - advantages and examples of application, Structure and Enviroment, 3, (2017), 191 – 198. Google Scholar
www.atlas-sollich.pl/produkt/naczynka-szklane-typ-nsd-50-17-60-i-nsd-50-23-80/ Google Scholar