Optimization Method Based on Minimization M-Order Central Moments Used In Surveying Engineering Problems
Sławomir Cellmer
University of Warmia and Mazury in OlsztynAndrzej Bobojć
Abstrakt
A new optimization method presented in this work – the Least m-Order Central Moments method, is a generalization of the Least Squares method. It allows fitting a geometric object into a set of points in such a way that the maximum shift between the object and the points after fitting is smaller than in the Least Squares method. This property can be very useful in some engineering tasks, e.g. in the realignment of a railway track or gantry rails. The theoretical properties of the proposed optimization method are analyzed. The computational problems are discussed. The appropriate computational techniques are proposed to overcome these problems. The detailed computational algorithm and formulas of iterative processes have been derived. The numerical tests are presented, in order to illustrate the operation of proposed techniques. The results have been analyzed, and the conclusions were then formulated.
Słowa kluczowe:
the Least Squares method, the Newton method, objective function, m-estimation, surveying engineeringBibliografia
AVRIEL M. 2003. Nonlinear Programming: Analysis and Methods. Dover Publishing. Google Scholar
CASPARY W., HAEN W. 1990. Simultaneous estimation of location and scale parameters in the context of robust M-estimation. Manuscripta Geodaetica, 15: 273–282. Google Scholar
CELLMER S. 2014. Least fourth powers: optimisation method favouring outliers. Survey Review, 47(345): 417. DOI: https://doi.org/10.1179/1752270614Y.0000000142. Google Scholar
CHANG X.W., GUO Y. 2005. Huber’s M-estimation in relative GPS positioning: computational aspects. Journal of Geodesy, 79: 351–362. DOI: https://doi.org/10.1007/s00190-005-0473-y. Google Scholar
DUCHNOWSKI R., WIŚNIEWSKI Z. 2012. Estimation of the shift between parameters of functional models of geodetic observations by applying M split estimation. Journal of Surveying Engineering, 138: 1–8. DOI: 10.1061/(ASCE)SU.1943-5428.0000062. Google Scholar
FLETCHER R. 1987. Practical methods of optimization. 2nd ed. John Wiley & Sons, New York. Google Scholar
HAMPEL F.R., RONCHETTI E., ROUSSEEUW P.J., STAHEL W.A. 1986. Robust statistics: the approach based on influence function. Wiley, New York. Google Scholar
HUBER P.J. 1981. Robust statistics. Wiley, New York. Google Scholar
KADAJ R. 1988. Eine verallgemeinerte Klasse von Schätzverfahren mit praktischen Anwendungen. Z Vermessungs-wesen, 113(4): 157–166. Google Scholar
KAMIŃSKI W., WIŚNIEWSKI Z. 1992. Analysis of some, robust, adjustment methods. Geodezja i Kartografia, 41(3-4): 173-182. Google Scholar
KOCH K.R. 1996. Robuste Parameterschätzung. Allgemeine Vermessungs-Nachrichten, 103(11): 1–18. Google Scholar
LIEW C.K. 1976. Inequality constrained least squares estimation. Journal of the American Statistical Association, 71: 746–751. Google Scholar
MARTINS T.C., TSUZUKI M.S.G. 2009. Placement over containers with fixed dimensions solved with adaptive neighborhood simulated annealing. Bulletin of the Polish Academy of Sciences. Technical Sciences, 57(3): 273-280. Google Scholar
MEAD J.L., RENAUT R.A. 2010. Least squares problems with inequality constraints as quadratic constraints. Linear Algebra and its Applications, 432(8): 1936–1949. Google Scholar
NEUMANN J. von, MORGENSTERN O. 1947. Theory of games and economic behavior. Princeton Univ. Press. Princeton, New Jersey. Google Scholar
NOCEDAL J., WRIGHT S.J. 1999. Numerical Optimization. Springer-Verlag, Berlin. Google Scholar
SKAŁA-SZYMAŃSKA M., CELLMER S., RAPIŃSKI J. 2014. Use of Nelder-Mead simplex method to arc fitting for railway track realignment. The 9th International Conference Environmental Engineering, selected papers. DOI: 10.3846/enviro.2014.244. Google Scholar
WERNER H.J. 1990. On inequality constrained generalized least-squares estimation. Linear Algebra and its Applications, 27: 379–392. DOI: http://dx.doi.org/10.1179/1752270614Y.0000000142. Google Scholar
WIŚNIEWSKI Z. 2009. Estimation of parameters in a split functional model of geodetic observations (M split estimation). Journal of Geodesy, 83: 105–120. DOI: https://doi.org/10.1007/s00190-008-0241-x. Google Scholar
WIŚNIEWSKI Z. 2010. M split(q) estimation: estimation of parameters in a multi split functional model of geodetic observations. Journal of Geodesy, 84: 355–372. DOI: https://doi.org/10.1007/s00190-010-0373-7. Google Scholar
XU P. 1989. On robust estimation with correlated observations. Bulletin Géodésique, 63: 237–252. Google Scholar
YANG Y.1999. Robust estimation of geodetic datum transformation. Journal of Geodesy, 73: 268–274. DOI: https://doi.org/10.1007/s001900050243. Google Scholar
YANG Y., SONG I., XU T. 2002. Robust estimation for correlated observations based on bifactor equivalent weights. Journal of Geodesy, 76: 353–358. DOI: https://doi.org/10.1007/s00190-002-0256-7. Google Scholar
ZHONG D. 1997. Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights. Journal of Geodesy, 71: 552–561. DOI: https://doi.org/10.1007/s001900050123. Google Scholar
ZHU J. 1996. Robustness and the robust estimate. Journal of Geodesy, 70: 586–590. DOI: https://doi.org/10.1007/BF00867867. Google Scholar
University of Warmia and Mazury in Olsztyn