Zastosowanie metod analizy danych środowiska Python oraz Microsoft Excel w rozwiązywaniu problemów biznesowych
Jolanta Litwin
a:1:{s:5:"en_US";s:50:"Politechnika Rzeszowska im. Ignacego Łukasiewicza";}Marcin Olech
Anna Szymusik
Abstrakt
W artykule opisano aktualny stan badań dotyczących integracji środowiska Microsoft Excel oraz Python, która daje użytkownikowi biznesowemu odpowiednie narzędzie do rozwiązywania wybranych problemów biznesowych. Integracja została przygotowana z wykorzystaniem Visual Basic for Application (VBA), a także biblioteki środowiska Python XLWings. Stworzenie odpowiedniego graficznego interfejsu użytkownika (GUI) w Microsoft Excel pozwala użytkownikowi biznesowemu korzystać z wybranej metody analizy danych dostępnej w środowisku Python bez konieczności programowania w celu otrzymania wyników, które są trudne lub nawet niemożliwe do uzyskania przy użyciu samego Microsoft Excel.
Słowa kluczowe:
time series forecasting, python integration, excel integrationBibliografia
BIRCH D., LYFORD-SMITH D., GUO Y. 2018. The Future of Spreadsheets in the Big Data Era. Proceedings of the EuSpRIG 2017 Conference “Spreadsheet Risk Management”. Imperial College, London, UK. Google Scholar
BROWNLEE J. 2020. Introduction to Time Series Forecasting with Python: How to Prepare Data and Develop Models to Predict the Future. Machine Learning Mastery, San Francisco, p. 2-5. Google Scholar
CHICCO D., WARRENS M.J., JURMAN G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7: e623. DOI: https://doi.org/10.7717/peerj-cs.623. Google Scholar
DONATI G., WOOLSTON C. 2017. Information management: Data domination. Nature 548: 613–614. DOI: https://doi.org/10.1038/nj7669-613a. Google Scholar
EHRHARDT M., GÜNTHER M., TER MATEN E.J.W. 2017. Novel Methods in Computational Finance. Springer, Cham, p. 545. Google Scholar
HANSUN S., KRISTANDA M.B. 2017. Performance Analysis of Conventional Moving Average Methods in Forex Forecasting. Proceedings of 2017 International Conference on Smart Cities, Automation & Intelligent Computing Systems. Yogyakarta, Indonesia. Google Scholar
HYNDMAN R.J., ATHANASOPOULOS G. 2018. Forecasting: Principles and Practice. 2nd ed. OTexts, Melbourne, p. 57-58. https://otexts.com/fpp2/ (access: 18.06.2021). Google Scholar
JANUSCHOWSKI T., GASTHAUS J., WANG Y. 2019. Open-Source Forecasting Tools in Python. The International Journal of Applied Forecasting, 55: 20-26. Google Scholar
KIM S., KIM H. 2016. A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3): 669-679. Google Scholar
KOH L., ORZES G., JIA F. 2019. The fourth industrial revolution (Industry 4.0): technologies disruption on operations and supply chain management. International Journal of Operations & Production Management, 39(6/7/8): 817-828. Google Scholar
KURZAK L. 2012. Importance of forecasting in enterprise management. Advanced Logistic Systems, 6(1): 173-182. Google Scholar
NELLI F. 2018. Python Data Analytics with Pandas, NumPy and Matplotlib. 2nd ed. Apress, Rome, p. 143-145. Google Scholar
PENA-SANCHEZ Y., RINGWOOD J. 2017. A Critical Comparison of AR and ARMA Models for Short-term Wave Forecasting. Proceedings of the 12th European Wave and Tidal Energy Conference, Kildare, Ireland. Google Scholar
RASCHKA S., MIRJALILI V. 2019. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2. 3rd ed. Packt Publishing Ltd., Birmingham, p. 207-211. Google Scholar
SAABITH A.L.S., FAREEZ M.M.M., VINOTHRAJ T. 2019. Python Current Trend Applications – An Overview. International Journal of Advance Engineering and Research Development, 6(10): 6-12. Google Scholar
SHIM J.K., SIEGEL J.G., SHIM A.I. 2012. Budgeting Basics and Beyond. 4th ed. John Wiley & Sons, Inc., Hoboken, p. 277-279. Google Scholar
SIAMI-NAMINI S., NAMIN A.S. 2018. Forecasting economic and financial time series: ARIMA vs. LSTM. http://arxiv.org/abs/1803.06386 (access: 17.06.2021). Google Scholar
SPEIGHT A. 2021. Visual Studio Code for Python Programmers. John Wiley & Sons, Inc., Hoboken, p. 3-49. Google Scholar
SWAMYNATHAN M. 2019. Mastering Machine Learning with Python in Six Steps. A Practical Implementation Guide to Predictive Data Analytics Using Python. 2nd ed. Apress, Bangalore, p. 234-243. Google Scholar
WINKOWSKI C. 2019. Classification of forecasting methods in production engineering. Engineering Management in Production and Services, 11(4): 23-33. Google Scholar
a:1:{s:5:"en_US";s:50:"Politechnika Rzeszowska im. Ignacego Łukasiewicza";}