Assessment of Wall Salinity in the Selection of Renovation Plaster Systems

Arkadiusz Panuś

a:1:{s:5:"en_US";s:42:"University of Warmia and Mazury in Olsztyn";}


Abstrakt

This article presents issues related to assessing the degree of wall salinity to select plaster systems for renovations of damp building walls. The most commonly used salt concentration tests pose many difficulties. If used uncritically, they risk failing to select the right system or its incorrect make. The accuracy of the colorimetric method for testing chloride, nitrate, and sulphate content was analysed to exemplify the magnitude of the problem. Both multi-salt solutions of known concentrations and unknown composition extracted from drillings in the walls of a historical facility were examined. A comparative methodology using ion chromatography as a standard was employed in the research. The analytical methods and the selected modules of the „Statistica” software were used to analyse data and present the results. The colorimetric method has been shown to distort salt concentration values, posing a risk of unsuccessful repair work on high-salinity walls. A method for determining the correction reducing the measurement error has been proposed. The factors affecting the error were also mentioned. Attention has also been drawn to the resolution and application of a method with a correct concentration range intended to improve work efficiency and optimize the costs incurred in renovating the salty wall.


Słowa kluczowe:

salinity analysis, colorimetry, salty wall, restoration plaster, ion chromatography


BLÄUER BÖHM C. 2005. Quantitative Salt Analysis in Conservation of Buildings. Restoration of Buildings and Monuments, 11(6): 409-418. https://doi.org/10.1515/rbm-2005-6001.   Google Scholar

BORRELLI E. 1999. Introduction, Salts. In: ARC Laboratory Handbook. 1st ed. Eds. Ch. McDowall, C. Rockwell. ATEL S.p.A., 3: 3-24.   Google Scholar

CAMUFFO D. 2018. Standardization Activity in the Evaluation of Moisture Content. J. Cult. Herit., 31: S10-S14. https://doi.org/10.1016/j.culher.2018.03.021.   Google Scholar

CHAROLA A.E. 2000. Salts in the Deterioration of Porous Materials: An Overview. J. Am. Inst. Conserv., 39(3): 327-343. https://doi.org/10.2307/3179977.   Google Scholar

DOEHNE E. 2002. Salt Weathering: A Selective Review. Geol. Soc. Spec. Publ., 205: 51-64. https://doi.org/10.1144/GSL.SP.2002.205.01.05.   Google Scholar

DOMASŁOWSKI W. 2011. Zabytki kamienne i metalowe, ich niszczenie i konserwacja profilaktyczna. 1st ed. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Torun, p. 1-565.   Google Scholar

FRANZONI E., BANDINI S. 2012. Spontaneous Electrical Effects in Masonry Affected by Capillary Water Rise: The Role of Salts. Constr. Build. Mater., 35: 642-646. https://doi.org/10.1016/j.conbuildmat.2012.04.098.   Google Scholar

FRANZONI E., BANDINI S. GRAZIANI G. 2014. Rising Moisture, Salts and Electrokinetic Effects in Ancient Masonries: From Laboratory Testing to on-Site Monitoring. J. Cult. Herit., 15(2): 112-120. https://doi.org/10.1016/j.culher.2013.03.003.   Google Scholar

FRANZONI E., SANDROLINI F., BANDINI S. 2011. An Experimental Fixture for Continuous Monitoring of Electrical Effects in Moist Masonry Walls. Constr. Build. Mater., 25(4): 2023-2029. https://doi.org/10.1016/J.CONBUILDMAT.2010.11.047.   Google Scholar

GACZEK M., FISZER S. 2014. Tynki Specjalne. Część 2. Builder, 6: 60-64.   Google Scholar

GONÇALVES T.D. 2007. Salt Crystallization in Plastered or Rendered Walls. Thesis for the degree of PhD, Technical University of Lisbon, Lisbon.   Google Scholar

GONÇALVES T.D., RODRIGUES J.D., ABREU M.M., ESTEVES A.M., SILVA A.S. 2006. Causes of Salt Decay and Repair of Plasters and Renders of Five Historic Buildings in Portugal. Proc. Int. Conf. Heritage, Weather. Conserv. HWC 2006, 1 (January): 273-284.   Google Scholar

GOUDIE A., VILES H. 1997. Salt Weathering Hazard. Wiley, Chichester, p. 1-256.   Google Scholar

HERODOTUS. 420BC. Book 2. The History of Herodotus, 2.   Google Scholar

KNOP K. 2016. Wyprawy tynkarskie na bazie tynków renowacyjnych. Renowacje i Zabyt., 4: 186-187.   Google Scholar

KONCA P., MAĆKOWIAK A., KONIORCZYK M. 2016. Renovation plaster as a protection against salt crystallization induced damage. J. Civ. Eng. Environ. Archit., 63(3): 177-184. https://doi.org/10.7862/rb.2016.199.   Google Scholar

LUBELLI B.A.A. 2006. Sodium Chloride Damage to Porous Building Materials. Thesis for the degree of PhD, Delft University of Technology, Delf.   Google Scholar

LUBELLI B., CNUDDE V., DIAZ-GONCALVES T., FRANZONI E., VAN HEES R.P.J., IOANNOU I., MENENDEZ B., NUNES C., SIEDEL H., STEFANIDOU M., VERGES-BELMIN V., VILES H. 2018. Towards a More Effective and Reliable Salt Crystallization Test for Porous Building Materials: State of the Art. Mater. Struct., 51(2): 55. https://doi.org/10.1617/s11527-018-1180-5.   Google Scholar

LUQUER L.M. 1895. The Relative Effects of Frost and the Sulphate of Soda Efflorescence Tests on Building Stones. Trans. Am. Soc. Civ. Eng., 33(1): 235-247. https://doi.org/10.1061/TACEAT.0001181.   Google Scholar

MARAVELAKI-KALAITZAKI, P., BAKOLAS, A., MOROPOULOU, A. 2003. Physico-Chemical Study of Cretan Ancient Mortars. Cem. Concr. Res., 33 (5), 651-661. https://doi.org/10.1016/S0008-8846(02)01030-X.   Google Scholar

NOCOŃ M. 2016. System tynków renowacyjnych quick-mix. Renowacje i Zabyt., 4: 176-179.   Google Scholar

OBERTA W., ŁUKASZEWICZ J.W. 2015. Badania soli rozpuszczalnych w wodzie za pomocą strefowej elektroforezy kapilarnej. Acta Univ. Nicolai Copernici, 46: 363-378. https://doi.org/10.12775/AUNC_ZiK.2015.014.   Google Scholar

PAVLÍKOVÁ M., PAVLÍK Z., KEPPERT M., ČERNÝ R. 2011. Salt Transport and Storage Parameters of Renovation Plasters and Their Possible Effects on Restored Buildings’ Walls. Constr. Build. Mater., 25(3): 1205-1212. https://doi.org/10.1016/j.conbuildmat.2010.09.034.   Google Scholar

PEŘINKOVÁ M., DLÁBIKOVÁ I., POSPÍŠIL P., BÍLEK V. 2021. Research into the Influence of Subsoil on Sulphates, Nitrates and Chlorides Accumulated in Renovation Plasters Used for Rehabilitation of Monuments in the Czech Republic. J. Cult. Herit., 49: 197-210. https://doi.org/10.1016/j.culher.2021.01.011.   Google Scholar

SARDELLA A., DE NUNTIIS P., BONAZZA A. 2018a. Efficiency Evaluation of Treatments against Rising Damp by Scale Models and Test in Situ. J. Cult. Herit., 31: S30-S37. https://doi.org/10.1016/J.CULHER.2018.03.020.   Google Scholar

SARDELLA A., DE NUNTIIS P., RIZZO M., GIOSUÈ C., TITTARELLI F., BONAZZA A. 2018b. In Situ Performance Evaluation of Chemical Injections against Rising Damp: A Case Study in Italy. Measurement, 130: 128-136. https://doi.org/10.1016/J.MEASUREMENT.2018.08.011.   Google Scholar

STILLHAMMEROVÁ M. 2006. Short Overview on Problems of Water Soluble Salts in Slovak Republic. European Research on Cultural Heritage, 5: 119-123.   Google Scholar

WTA Merkblatt 2-9-04 Sanierputzsysteme. 2004. Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege, München.   Google Scholar

WÓJCIK R. 2006. Anti-damp wall protection using the non-isothermal injection method. Thesis for the degree of associate professor, University of Warmia and Mazury in Olsztyn, Olsztyn.   Google Scholar

WÓJCIK R. 2010. Ochrona budynków przed wilgocią i wodą gruntową. In: Budownictwo ogólne. Fizyka budowli. Vol. 2. 1st ed. Eds. J. Panas, M. Siarkiewicz. Arkady, Warszawa, p. 913-981.   Google Scholar


Opublikowane
15-11-2021

Cited By /
Share

Panuś, A. (2021). Assessment of Wall Salinity in the Selection of Renovation Plaster Systems. Technical Sciences, 24(1), 229–244. https://doi.org/10.31648/ts.7092

Arkadiusz Panuś 
a:1:{s:5:"en_US";s:42:"University of Warmia and Mazury in Olsztyn";}



Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.





-->