KONCEPCJA UKŁADU DO ZDALNEGO POMIARU DRGAŃ W POJAZDACH ELEKTRYCZNYCH NAPĘDZANYCH SILNIKAMI Z WIRUJĄCYM KORPUSEM

Zenon Syroka

UWM


Abstrakt

Praca zawiera projekt układu pomiarowego drgań. Układ zastosowano w pojazdach elektrycznych napędzanych silnikami z wirującym korpusem. Silniki te zostały przez autora zaprojektowane i opatentowane. Założono możliwie najniższy koszt urządzenia przy maksymalnej niezawodności oraz minimalny pobór mocy zasilania. Zaprezentowano najważniejsze schematy ideowe układu oraz ich dokładny opis.


Słowa kluczowe:

Drgania, pojazdy elektryczne, pomiar drgań


ALI E., KHALIGH A., NIE Z., LEE Y.J. 2009. Integrated Power Electronic Converters and Digital Control. CRC Press, Boca Raton.   Google Scholar

BALACHANDR B., MAGRAN E. 2009. Vibration Cengage Learning, Toronto.   Google Scholar

BEARDS C. 1995. Engineering Vibration.Analysis with Application to Control Systems. Edward Arnold, a division of Hodder Headline PLC, London.
Crossref   Google Scholar

BISHOP R., GLADWELL G., MICHAELSON S. 1972. Macierzowa analiza drgań. Wydawnictwo Naukowo-Techniczne, Warszawa.   Google Scholar

BOLTON W. 2006. Programmable Logic Controllers. Elsevier, Amsterdam, Boston.
Crossref   Google Scholar

BROCH T. 1984. Mechanical Vibration and Shock Measurements. Printed in Denmark: Larsen & Son A/S. Soborg.   Google Scholar

CHARKIEWICZ A. 1956. Drgania samowzbudne. Dom Słowa Polskiego. Warszawa.   Google Scholar

CHEN C.-T. 1991. Analog and Digital Control system Design: Transfer Function, State Space, and Algebraic Methods. Saunders College Publishing, Filadelfia, Pensylwania.   Google Scholar

DENTON T. 2016. Electric and Hybrid Vehicles. Routledge, San Diego.
Crossref   Google Scholar

DORF R.C., BISHOP R.H. 2008. Modern Control System Solution Manual. Prentice Hall, New Jersey.   Google Scholar

FADALI S. 2009. Digital Control Engineering, Analysis and Design. Elsevier, Burlington.
Crossref   Google Scholar

GABOR R., KOWOL M., KOŁODZIEJ J., KMIECIK S., MYNAREK P. 2019. Switchable reluctance motor, especially for the bicycle. Patent No 231882.   Google Scholar

GIERGIEL J.1984. Tłumienie drgań mechanicznych. Akademia Górniczo-Hutnicza, Kraków.   Google Scholar

GIERGIEL J. 1986. Drgania układów mechanicznych. Akademia Górniczo-Hutnicza, Kraków.   Google Scholar

GIERGIEL J. 2004. Drgania mechaniczne układów dyskretnych. Teoria, przykłady, zadania. Oficyna Wydawnicza Politechniki Rzeszowskiej. Rzeszów.   Google Scholar

GLINKA T., FRĘCHOWICZ A. 2007. Brushless DC motor speed control system. Patent No.P195447.   Google Scholar

HARRIS C., PIERSOL A. 2002. Harris’shock and vibration handbook. McGraw-Hill, New York.   Google Scholar

HARTOG J. 1964. Drgania mechaniczne. Państwowe Wydawnictwo Naukowe, Warszawa.   Google Scholar

HATCH M., 2001. Vibration Simulation Using MATLAB and ANSYS. Chapman & Hall/CRC. London.
Crossref   Google Scholar

HUSAIN I. 2003. Electric and Hybrid Vehicles, Design Fundamentals. CRC Press LLC, Boca Raton, London.   Google Scholar

HOUSNER G., HUDSON D. 1991. Applied Mechanics Dynamics. California Institute of Technology, Pasadena.   Google Scholar

HYASHI CH. 1964. Drgania nieliniowe w układach fizycznych. Wydawnictwo Naukowo-Techniczne, Warszawa.   Google Scholar

JONGSEONG J., WONTAE J. 2019. Method of controlling constant current of brushless dc motor and controller of brushless dc motor using the same. United States Patent Application Publication, US2018323736 (A1).   Google Scholar

KELLY G. 1996. Mechanical Vibrations. McGraw-Hill, New York.   Google Scholar

KOJIMA N., ANNAKA T. 2019. Motor control apparatus and motor unit. United States Patent Application Publication, US2019047517 (A1).   Google Scholar

KHAJEPOUR A., FALLAH S., GOODARZI A. 2014. Electric and Hybrid Vehicles Technologies, Modeling and Control: a Mechatronic Approach. John Wiley & Sons Ltd, Chichester.   Google Scholar

KOLANO K. 2020. Method for measuring the angular position of the shaft of a brushless DC motor with shaft position sensors. Patent No.P235653.   Google Scholar

LUECKE J. 2005. Analog and Digital Circuits for Electronic Control System Applications Using the TI MSP430 Microcontroller. Elsvier. Amsterdam, Boston.
Crossref   Google Scholar

MI CH., MASRUR M.A., GAO D.W. 2011. Hybrid Electric Vehicles Principles and Applications with Practical Perspectives. John Wiley & Sons Ltd., Chichester.
Crossref   Google Scholar

MINORSKY N. 1967. Drgania niwliniowe. Państwowe Wydawnictwo Naukowe, Warszawa.   Google Scholar

OGATA K. 1995. Discrete Time Control Systems. Prentice-Hall, New Jersey.   Google Scholar

OSIŃSKI Z. 1979. Tłumienie drgań mechanicznych. Państwowe Wydawnictwo Naukowe, Warszawa.   Google Scholar

OSIŃSKI Z. 1980. Teoria drgań. Państwowe Wydawnictwo Naukowe, Warszawa.   Google Scholar

PAIN H. 2005. The Physics of Vibrations and Waves. John Wiley & Sons, London.
Crossref   Google Scholar

PISTOIA G. 2010. Electric and Hybrid Vehicles Power Sources, Models, Sustainability, Infrastructure and the Market. Elsevier, Amsterdam, Boston.   Google Scholar

PISZCZEK K., WALCZAK J. 1982. Drgania w budowie maszyn. Państwowe Wydawnictwo Naukowe, Warszawa.   Google Scholar

RAO S. 2004. Mechanical Vibrations. Prentice Hall, New York.   Google Scholar

RAO S. 2007. Vibration of Continuous Systems. John Wiley & Sons, New Jersey.   Google Scholar

STARCZEWSKI S. 2010. Drgania mechaniczne. Wydawnictwo Politechniki Warszawskiej. Warszawa.   Google Scholar

SIKORA A., ZIELONKA A. 2011. Power supply system for a BLDC motor. Patent No. P.394971.   Google Scholar

SOYLU S. 2011. Electric Vehicles – the Benefits and Barriers. Edited by Seref Soylu, Rijeka.
Crossref   Google Scholar

STEVIĆ Z. 2013. New Generation of Electric Yehicles. Edited by Zoran Stević, Rijeka.   Google Scholar

SYROKA Z. 2015. Wireless Diagnostic System. Scholar’s Press, Saarbrucken.   Google Scholar

SYROKA Z., KRAJEWSKI K. 2019. Controller for brushless DC motors. Patent No. P431380, filing date: 4 October 2019.   Google Scholar

SYROKA Z.W. 2019. Electric Vehicels – Digital Control. Scholars’ Press, Mauritius.   Google Scholar

SYROKA Z, SKŁODOWSKI P. 2021. Silnik prądu stałego z obrotowym korpusem. Wzór użytkowy. 10.08.2021, Prawo Ochronne 72224.   Google Scholar

ŚLUSAREK B., PRZYBYLSKI M., GAWRYŚ P. 2014. Hall effect sensor of the shaft position of the brushless DC motor. Patent No.P218476.   Google Scholar

WILLIAMSON S.S. 2013. Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles. Springer, New York, London.
Crossref   Google Scholar

WOJNAROWSKI J. 1981. Zastosowanie grafów w analizie drgań układów mechanicznych. Państwowe Wydawnictwo Naukowe, Warszawa.   Google Scholar

WOLF J., DEEKS A. 2004. Foundation Vibration Analysis: A Strength-of-Materials Approach. Elsevier, New York.   Google Scholar

ZIEMBA S. 1957. Analiza drgań. Tom 1. Państwowe Wydawnictwo Naukowe, Warszawa.   Google Scholar

ZIEMBA S. 1959. Analiza drgań. Tom 2. Państwowe Wydawnictwo Naukowe, Warszawa.   Google Scholar


Opublikowane
22-07-2022

Cited By /
Share

Syroka, Z. (2022). KONCEPCJA UKŁADU DO ZDALNEGO POMIARU DRGAŃ W POJAZDACH ELEKTRYCZNYCH NAPĘDZANYCH SILNIKAMI Z WIRUJĄCYM KORPUSEM . Technical Sciences, 25, 77–85. https://doi.org/10.31648/ts.7582

Zenon Syroka 
UWM



Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.





-->