Experimental study on Ahmed’s body drag coefficient

Dominik Wysocki

a:1:{s:5:"en_US";s:27:"Politechnika Częstochowska";}

Arkadiusz Szymanek

University of Technology, 42-201 Częstochowa, Poland


Abstrakt

The work presents an experimental designation of the aerodynamic drag coefficient for two configurations of the Ahmed body model, with slant angle of 25o and with the inactive synthetic jet generator. When analyzing the aerodynamic drag of vehicles, most authors focus on higher Reynolds numbers, describing lower values only by designated trend lines. Which is why the main contribution of this experimental work was to designate the Ahmed’s body drag coefficient for low Reynolds numbers and to verify the obtained results with other authors experiments especially with the trend lines for Reynolds number in the range 0,35x105 – 1,8x105. For data taken from the literature, it can be seen that the value of the drag coefficient for the Ahmed body model decreases when the Reynolds number increases. The results obtained during the experiment show the opposite tendency.


Słowa kluczowe:

Ahmed body, aerodynamics, wind tunnel, drag coefficient, boundary layer


Ahmed, S. R., G. Ramm, and G. Faltin. 1984. Some salient features of the time-averaged ground vehicle wake. SAE Transactions, 93:473–503.
Crossref   Google Scholar

Bello F. 2011. Numerical study of Ahmed body. Universidad de Malaga.   Google Scholar

Bello-Millán F. J., Mäkelä T., Parras L., del Pino C., Ferrera C. 2016. Experimental study on Ahmed's body drag coefficient for different yaw angles. Journal of Wind Engineering and Industrial Aerodynamics, 157:140-144. doi: 10.1016/j.jweia.2016.08.005
Crossref   Google Scholar

Cui W., Zhu H., Xia C., Yang Z. 2015. Comparison of Steady Blowing and Synthetic Jets for Aerodynamic Drag Reduction of a Simplified Vehicle. Procedia Engineering, 126:388-392. doi: 10.1016/j.proeng.2015.11.224
Crossref   Google Scholar

Kadivar M., Tormey D., McGranaghan G. 2021. A review on turbulent flow over rough surfaces: Fundamentals and theories. International Journal of Thermofluids, 10:100077. doi: 10.1016/j.ijft.2021.100077
Crossref   Google Scholar

Maho H. 2016. Concepts for generating lateral aerodynamic forces by means of an asymmetric airflow. AIRSHAPER Department of Computational Fluid Dynamics.   Google Scholar

Mäkelä T. 2013. Experimental study of the flow around the Ahmed body. Universidad de Malaga.   Google Scholar

Meile W., Brenn G., Reppenhagen A., Lechner B., Fuchs A. 2011. Experiments and numerical simulations on the aerodynamics of the Ahmed body. CFD Letters, 3(1).   Google Scholar

Piechna J. 2000. Fundamentals of vehicle aerodynamics. Wydawnictwo Komunikacji i Łączności. Warsaw (in Polish).   Google Scholar

Schlichting H., Gersten K. 2000. Boundary-Layer Theory. Springer, 8th edition:29-50. doi: 10.1007/978-3-642-85829-1
Crossref   Google Scholar

Shadmani S., Mousavi Nainiyan S. M., Ghasemiasl R. 2018. Experimental study of flow control over an Ahmed body using plasma actuator. Mechanics and Mechanical Engineering, 22(1):239-251.
Crossref   Google Scholar

Sivaraj G., Parammasivam K. M., Suganya G. 2018. Reduction of aerodynamic drag force for Reducing fuel consumption in road vehicle using basebleed. Journal of Applied Fluid Mechanics, 11(6):1489-1495. doi: 10.29252/jafm.11.06.29115
Crossref   Google Scholar

Sturm H., Dumstorff G., Busche P., Westermann D., Lang W. 2012. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors. Sensors, 12(11):14292-14306. doi: 10.3390/s121114292
Crossref   Google Scholar

Talay T. A. 1975. Introduction to the aerodynamics of flight. NASA History Division, Washington, D. C.   Google Scholar

Thacker A., Aubrun S., Leroy A., Devinant P. 2012. Effects of suppressing the 3D separation on the rear slant on the flow structures around an Ahmed body. Journal of Wind Engineering and Industrial Aerodynamics, 107-108:237-243. doi: 10.1016/j.jweia.2012.04.022
Crossref   Google Scholar

Wysocki D. 2020. Experimental studies to reduce the aerodynamic drag of a vehicle model using “synthetic jet”. Mateusz Weiland Network Solutions, Poszerzamy horyzonty, 21(3):83-99 (in Polish).   Google Scholar

Wang B., Yang Z., Zhu H. 2019. Active flow control on the 25° Ahmed body using a new unsteady jet. International Journal of Heat and Fluid Flow, 79:108459. doi: 10.1016/j.ijheatfluidflow.2019.108459
Crossref   Google Scholar

Zhu L. D., Li L., Xu Y. L., Zhu Q. 2012. Wind tunnel investigations of aerodynamic coefficients of road vehicles on bridge deck. Journal of Fluids and Structures, 30:35-50. doi: 10.1016/j.jfluidstructs.2011.09.002
Crossref   Google Scholar


Opublikowane
05-09-2022

Cited By /
Share

Wysocki, D., & Szymanek, A. (2022). Experimental study on Ahmed’s body drag coefficient. Technical Sciences, 25, 87–105. https://doi.org/10.31648/ts.7897

Dominik Wysocki 
a:1:{s:5:"en_US";s:27:"Politechnika Częstochowska";}
Arkadiusz Szymanek 
University of Technology, 42-201 Częstochowa, Poland



Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.





-->