Abdulhafedh, A. (2022). Incorporating Multiple Linear Regression in Predicting the House Prices Using a Big Real Estate Dataset with 80 Independent Variables. Open Access Library Journal, 9(1). DOI: 10.4236/ oalib.1108346
Crossref
Google Scholar
Adamczyk, T. (2017). Application of the Huber and Hampel M-estimation in real estate value modeling. Geomatics and Environmental Engineering, 11(1), 15–23. DOI: dx.doi.org/10.7494/geom.2017.11.1.15
Google Scholar
Adamczyk, T. (September, 2017). Application of Huber and Hampel m-estimation in analysing of real estate price volatility over time [Conference proceedings]. Geographic Information Systems Conference and Ex¬hibition “GIS ODYSSEY 2017”, Trento – Vattaro, Italy.
Crossref
Google Scholar
Albuquerque, J. S, & Biegler, L. T. (1996). Data recon¬ciliation and gross-error detection for dynamic sys¬tems. AIChE Journal, 42(10), 2841–2856. https://doi. org/10.1002/aic.690421014
Crossref
Google Scholar
Anderws, D. F. (1974). A Robust Method for Multiple Lenear Regression. Technometrics, 16(4), 523–531. https://doi.org/10.2307/1267603
Crossref
Google Scholar
Arya, K. V., Gupta, P., Kalra, P. K., & Mitra, P. (2007). Image registration using robust M-estimators. Pattern Recognition Letters, 28(15), 1957–1968. https://doi. org/10.1016/j.patrec.2007.05.006
Crossref
Google Scholar
Banaś, M., & Ligas, M. (2014). Empirical test of performance of some M-estimators. Geodesy and Cartography, 63(2), 127–146. https://doi.org/10.2478/ geocart-2014-0010
Crossref
Google Scholar
Banaś, M., Czaja, J., & Dąbrowski, J. (2022). The Application of Regression Analysis for Estimating the Market Value of Commercial Real Estate. Geomatics and Environmental Engineering, 16(1), 17–35. DOI:10.7494/geom.2022.16.1.17
Crossref
Google Scholar
Chen, C. (2002). Robust Regression and Outlier Detection with the ROBUSTREG Procedure [Conference Paper]. Proceedings of the Twenty-Seventh Annual SAS Users Group International Conference, SAS Institute Inc., Cary, NC.
Google Scholar
Dehnel, G. (2015). Robust regression in Monthly Business Survey, Statistic in Transition new series, 16(1), 137–152. https://doi.org/10.59170/stattrans-2015-008
Crossref
Google Scholar
Dehnel, G., & Gołata, E. (2016). M-estimation in a Small Business Survey. Krakow Review of Economics and Management Zeszyty Naukowe Uniwersytetu Eko¬nomicznego W Krakowie, 1(949), 5–21. https://doi. org/10.15678/ZNUEK.2016.0949.0101
Crossref
Google Scholar
Grover, R., & Walacik, M. (2019). Property valuation and taxation for fiscal sustainability–lessons for Poland. Real Estate Management and Valuation, 27(1), 35–48. https://doi.org/10.2478/remav-2019-0004
Crossref
Google Scholar
Hampel, F. R. (1968). Contribusion to the theory of robust estimation. Univeristy of California.
Google Scholar
Huber, P. (1964). Robust Estimator of a Location Parameter. Ann. Math. Statist, 35(1), 73–101. https:// doi.org/10.1214/aoms/1177703732
Crossref
Google Scholar
Lemeš, L., & Akagic, A. (2022). Prediction of Real Estate Market prices with Regression Algorithms. In Ademović, N., Mujčić, E., Mulić, M., Kevrić, J., Akšamija, Z. (Eds.), Advanced Technologies, Systems, and Applications VII. IAT 2022. Lecture Notes in Networks and Systems (Vol. 539) (pp. 401–411). Springer. http://dx.doi.org/10.1007/978-3-031-17697- 5_32
Crossref
Google Scholar
Jana, P., Rosadi, D., & Supandi, E. D. (2023). Comparison of robust estimation on multiple regression model. Journal of Mathematics and Its Applications, 17(2). https://doi.org/10.30598/ barekengvol17iss2pp0979-0988
Crossref
Google Scholar
Janssen, Ch., Söderberg, B. & Zhou, J. (2001). Robust estimation of hedonic models of price and income for investment property. Journal of Property Investment & Finance, 19(4), 342–360. http://dx.doi.org/10.1108/ EUM0000000005789
Crossref
Google Scholar
de Menezes, D. Q. F., Prata, D. M., Secchi, A. R. & Pinto J. C. (2021). A review on robust M-estimators for regression analysis. Computer & Chemical Engineering, 147, Article 107254. https://doi. org/10.1016/j.compchemeng.2021.107254
Crossref
Google Scholar
Mulry, M. H., Kaputa, S., & Thompson, K. J. (2018). Setting M-Estimation Parameters for Detection and Treatmen of Infuential Values. Journal of Office Statistics, 34(2), 483–501. https://doi.org/10.2478/jos- 2018-0022
Crossref
Google Scholar
Nowel, K. (2019). Squared Msplit(q) S-transformation of control network deformations. Journal of Geodesy, 93, 1025–1044. https://doi.org/10.1007/s00190-018-1221-4
Crossref
Google Scholar
Özyurt, D. B., & Pike, R. W. (2004). Theory and practice of simultaneous data reconciliation and gross error detect for chemical processes. Computer and Chemical Engineering, 28(3), 381–402. https://doi.org/10.1016/j. compchemeng.2003.07.001
Crossref
Google Scholar
Pires, R. C., Simoes Costa, A., & Mili, L. (1999). Iteratively Reweighted Least-Squares State Estimation Through Givens Rotations. IEEE Transactions on Power System, 14(4). https://doi.org/10.1109/59.801941
Crossref
Google Scholar
Raza, A., Talib, M., Noor-ul-Amin, M., Gunaime, N., Boukhris, I., & Nabi, M. (2024). Enhancing perfor¬mance in the presence of outliers with redescending M-estimators. Scientific Report, 14, Article 13529. https://doi.org/10.1038/s41598-024-64239-6
Crossref
Google Scholar
Ross, R. K., Zivich, P. N., Stringer, J. S. A., & Cole, S. R. (2024). M-estimation for common epidemiliological measures: introduction and applied examples. International Journal of Epidemiology, 53(2). https:// doi.org/10.1093/ije/dyae030
Crossref
Google Scholar
Ruckshtul, A. (2016). Robust Fitting of Parametric Models Based on M-Estimation. IDP Institute of Data Analysis and Process Design; ZHAW Zurich University of Applied Sciences in Winterthur. https://ethz.ch/ content/dam/ethz/special-interest/math/statistics/ sfs/Education/Advanced%20Studies%20in%20 Applied%20Statistics/course-material-1719/Robuste/ robstat18E.pdf
Google Scholar
Susanti, Y., Pratiwi, H., Sulistijowati, S. H., & Liana, T. (2014). M estimation, S estimation, and MM esti¬mation in robusty regression. International Journal of Pure and Applied Mathematics, 91(3), 349–360. https://doi.org/10.12732/ijpam.v91i3.7
Crossref
Google Scholar
Śpiewak, B. (2018). Application of Passive Methods of Robust Estimation: Baarda’s and Pope’s in Real Estate Market Analysis. Real Estate Management and Valuation, 26(1). http://dx.doi.org/10.2478/ remav-2018-0001
Crossref
Google Scholar
Śpiewak, B., & Barańska A. (2020). Chosen statistical methods for the detection of outliers in real estate market analysis. Acta Scientiarum Polonorum Administratio Locorum, 19(2), 109–118. https://doi. org/10.31648/aspal.4608
Crossref
Google Scholar
Walacik, M., Cellmer, R., & Źróbek, S. (2013). Mass appraisal–international background, Polish solutions and proposal of new methods application. Geodetski list, 67(4), 255–269.
Google Scholar
Wiśniewski, Z. (2009). Estimation of parameters in a split functional model of geodetic observations (Msplit estimation). Journal of Geodesy, 83(2), 105–120. https://doi.org/10.1007/s00190-008-0241-x
Crossref
Google Scholar
Wiśniewski, Z. (2010). Msplit(q) estimation: estimation of parameters in a multi split functional model of geodetic observations. Journal of Geodesy, 84, 355–372. https://doi.org/10.1007/s00190-010-0373-7
Crossref
Google Scholar