Al-Zahrani, M. A., Abo-Monasar, A. (2015). Urban residential water demand prediction based on artificial neural networks and time series models. Water Resources Management, No 29 (10), 3651-3662. https://doi.org/10.1007/s11269-015-1021-z
Crossref
Google Scholar
Bakker, M., van Duist, H., van Schagen, K., Vreeburg, J., Rietveld, L. (2014). Improving the Performance of Water Demand Forecasting Models by Using Weather Input. Procedia Engineering, No 70, 93–102. doi: 10.1016/j.proeng.2014.02.012
Crossref
Google Scholar
Batóg, B., Foryś, I. (2009). Forecasting of hot and cold water consumption in building societies. Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania, No 15, 21-31.
Google Scholar
Bland, A., Khzouz, M., Statheros, T., Gkanas, E.I. (2017). PCMs for Residential Building Applications: A Short Review Focused on Disadvantages and Proposals for Future Development. Buildings, No 7(3), 78. https://doi.org/10.3390/buildings7030078
Crossref
Google Scholar
Castillo-Martinez, A., Gutierrez-Escolar, A., Gutierrez-Martinez, J.-M., Gomez-Pulido, J.M., Garcia-Lopez, E. (2014). Water Label to Improve Water Billing in Spanish Households. Water, No 6(5), 1467-1481. https://doi.org/10.3390/w6051467
Crossref
Google Scholar
Cieżak W., Zaremba M., Cieżak J. (2015). Forecasting of daily water consumption by using artificial neural networks. Instal, No 11, 61-63. http://www.informacjainstal.com.pl/
Google Scholar
Fayaz, M., Kim, D. A. (2018). Prediction Methodology of Energy Consumption Based on Deep Extreme Learning Machine and Comparative Analysis in Residential Buildings. Electronics, No 7(10), 222. https://doi.org/10.3390/electronics7100222
Crossref
Google Scholar
Griffin, J. S., Thal, Jr. A. E., Leach, S. E. (2014). Enhancing asset management through a better understanding of energy consumption. International Journal of Strategic Property Management, No 18(3), 253-264. https://doi.org/10.3846/1648715X.2014.941042
Crossref
Google Scholar
Guo, G., Liu, S. (2018). Short-term water demand forecast based on deep neural network. 1st International WDSA / CCWI 2018 Joint Conference, Kingston, Ontario, Canada.
Google Scholar
Huang, Y.-H., Lee, P.C. (2020). Role of property management in service demands of elderly residents of apartment complexes. International Journal of Strategic Property Management, No 24(1), 24-37. https://doi.org/10.3846/ijspm.2019.10852
Crossref
Google Scholar
Klassert, C., Sigel, K., Gawel, E., Klauer, B. (2015). Modeling Residential Water Consumption in Amman: The Role of Intermittency, Storage, and Pricing for Piped and Tanker Water. Water, No 7(7), 3643-3670. doi: 10.3390/w7073643
Crossref
Google Scholar
Marinoski, A.K., Vieira, A.S., Silva, A.S., Ghisi, E. (2014). Water End-Uses in Low-Income Houses in Southern Brazil. Water, No 6(7), 1985-1999. https://doi.org/10.3390/w6071985
Crossref
Google Scholar
Maslow, A.H. (1943). A theory of human motivation. Psychological Review, No 50(4), 370–96. doi:10.1037/h005434
Crossref
Google Scholar
McDonald, R.I., Weber, K., Padowski, J., Flörke, M., Schneider, C., Green, P.A., Gleeson, T., Eckman, S., Lehner, B., Balk, D.,Boucher, T., Grill, G. Montgomery, M. (2014). Water on an urban planet: Urbanization and the reach of urban water infrastructure. Glob. Environ. Chang, No 27, 96–105. https://doi.org/10.1016/j.gloenvcha.2014.04.022
Crossref
Google Scholar
Mukesh K., Adamowski J. (2015). Medium-Term Urban Water Demand Forecasting with Limited Data Using an Ensemble Wavelet–Bootstrap Machine-Learning Approach. Journal of Water Resources Planning and Management, No 141(2). doi: 10.1061/(ASCE)WR.1943-5452.0000454
Crossref
Google Scholar
ONZ Resolution adopted by the General Assembly on 25 September 2015, A/RES/70/1: the 2030 Agenda for Sustainable Development
Google Scholar
Ridwana, I., Nassif, N., Choi, W. (2020). Modeling of Building Energy Consumption by Integrating Regression Analysis and Artificial Neural Network with Data Classification. Buildings, No 10(11), 198. https://doi.org/10.3390/buildings10110198
Crossref
Google Scholar
Romano, G., Salvati, N., Guerrini, A. (2014). Estimating the Determinants of Residential Water Demand in Italy. Water, No 6(10), 2929-2945. https://doi.org/10.3390/w6102929
Crossref
Google Scholar
Romano, M., Kapelan, Z. (2014). Adaptive water demand forecasting for near real-ti-me management of smart water distribution systems, Environmental Modelling & Software, No 60, 265-276. https://doi.org/10.1016/j.envsoft.2014.06.016
Crossref
Google Scholar
Sajnóg, N. (2014). Infrastruktura techniczna związana z przesyłem i dystrybucją mediów oraz towarzyszące jej pasy terenu. Infrastruktura i Ekologia Terenów Wiejskich, No II/2/2014, 467–480. http://dx.medra.org/10.14597/infraeco.2014.2.2.034
Google Scholar
Somers, M. J., Casal, J. C. (2009). Using artificial neural networks to model nonlinearity: The case of the job satisfaction-job performance relationship, Organizational Research Methods, No 12(3), 403-417. doi:10.1177/1094428107309326
Crossref
Google Scholar
The World Bank, Water Resources Management, https://www.worldbank.org/en/topic/ waterresourcesmanagement, last Updated: Sep 20, 2017
Google Scholar
Thompson, B. (2015). Innovation in property management. Journal of Property Investment & Finance, No 33(5), 436-445. doi:10.1108/JPIF-05-2015-0027
Crossref
Google Scholar
Ullah, I., Ahmad, R., Kim, D. A. (2018). Prediction Mechanism of Energy Consumption in Residential Buildings Using Hidden Markov Model. Energies, No 11(2), 358. https://doi.org/10.3390/en11020358
Crossref
Google Scholar
Vergara, L.M., Gruis, V., van der Flier, K. (2019). Understanding Housing Management by Low-income Homeowners: Technical, Organisational and Sociocultural Challenges in Chilean Condominium Housing. Buildings, No 9(3), 65. https://doi.org/10.3390/buildings9030065
Crossref
Google Scholar
Wałęga, A., Bergel, T. (2009). Data mining implementation in household water usage forecasting in the farmhouses. Infrastructure and Ecology of Rural Areas, No 5/2009, 183-195
Google Scholar
Yeleliere, E., Cobbina, S.J., Duwiejuah, AB. (2018). Review of Ghana’s water resources: the quality and management with particular focus on freshwater resources. Applied Water Science, No 8(93). https://doi.org/10.1007/s13201-018-0736-4
Crossref
Google Scholar