Afzali, R., GharehBeygi, M., & Yazdanpanah Dero, Q. (2020). Climate changes and food policies: economic pathology. Climate Risk Management, 30, 100249. https://doi.org/10.1016/j.crm.2020.100249
Crossref
Google Scholar
Arvin, M., Bazrafkan, S., Beiki, P., & Sharifi, A. (2023). A county-level analysis of association between social vulnerability and COVID-19 cases in Khuzestan Province, Iran. International Journal of Disaster Risk Reduction, 84(1), 81–92. https://doi.org/10.1016/j. ijdrr.2022.103495
Crossref
Google Scholar
Banerjee, S., Dong, M., & Shi, W. (2023). Spatial–Temporal Synchronous Graph Transformer network (STSGT) for COVID-19 forecasting. Smart Health, 26(2), 48–57. https://doi.org/10.1016/j.smhl.2022.100348
Crossref
Google Scholar
Boareto, P. A., Safanelli, J., Liberato, R. B., Moro, C. H., Pécora Junior, J. E., Moro, C., Loures, E. R., & Santos, E. A. (2022). A hybrid model to support decision making in the stroke clinical pathway. Simulation Modelling Practice and Theory, 120(3), 60–72. https://doi.org/10.1016/j.simpat.2022.102602
Crossref
Google Scholar
Borges, M. E., Ferreira, L. S., Poloni, S., Bagattini, A. M., Franco, C., da Rosa, M. Q. M., Simon, L. M., Camey, S. A., Kuchenbecker, R. S., Prado, P. I., Diniz- Filho, J. A. F., Kraenkel, R. A., Coutinho, R. M., & Toscano, C. M. (2022). Modelling the impact of school reopening and contact tracing strategies on Covid-19 dynamics in different epidemiologic settings in Brazil. Global Epidemiology, 4, 100094. https://doi. org/10.1016/j.gloepi.2022.100094
Crossref
Google Scholar
Boudou, M., Khandelwal, S., ÓhAiseadha, C., Garvey, P., O’Dwyer, J., & Hynds, P. (2023). Spatio-temporal evolution of COVID-19 in the Republic of Ireland and the Greater Dublin Area (March to November 2020): A space-time cluster frequency approach. Spatial and Spatio-temporal Epidemiology, 45, 100565. https://doi. org/10.1016/j.sste.2023.100565
Crossref
Google Scholar
Bratton, W., & Wójcik, D. (2022). Financial information, physical proximity and COVID: The experience of Asian sell-side equity research analysts. Geoforum, 137(3), 135–145. https://doi.org/10.1016/j. geoforum.2022.11.001
Crossref
Google Scholar
Cheshmehzangi, A., Sedrez, M., Ren, J., Kong, D., Shen, Y., Bao, S., Xu, J., Su, Z., & Dawodu, A. (2021). The Effect of Mobility on the Spread of COVID-19 in Light of Regional Differences in the European Union. Sustainability, 13(10), 5395. https://doi.org/10.3390/ su13105395
Crossref
Google Scholar
Coro, G. (2021). A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate. Ecological Modelling, 431(2), 42–55. https://doi. org/10.1016/j.ecolmodel.2020.109187
Crossref
Google Scholar
Coskun, M. (2023). Intrinsic graph topological correlation for graph convolutional network propagation. Computer Standards & Interfaces, 83(1), 36–55. https://doi.org/10.1016/j.csi.2022.103655
Crossref
Google Scholar
Dawood, A. (2023). The efficacy of Paxlovid against COVID-19 is the result of the tight molecular docking between Mpro and antiviral drugs (nirmatrelvir and ritonavir). Advances in Medical Sciences, 68(1), 1–9. https://doi.org/10.1016/j.advms.2022.10.001
Crossref
Google Scholar
Dhingra, K., & Vandana, K. L. (2011). Indices for meas¬uring periodontitis: a literature review. International Dental Journal, 61(2), 76–84. https://doi.org/10.1111/ j.1875-595X.2011.00018.x
Crossref
Google Scholar
Dolorfino, M., Martin, L., Slonim, Z., Sun, Y., & Yang, Y. (2023). Classifying Solvable Primitive Permutation Groups of Low Rank. Journal of Computational Algebra, 5, 100005. https://doi.org/10.1016/j. jaca.2023.100005
Crossref
Google Scholar
Furati, K. M., Sarumi, I. O., & Khaliq, A. Q. M. (2021). Fractional model for the spread of COVID-19 subject to government intervention and public perception. Applied Mathematical Modelling, 95(3), 85–105. https://doi.org/10.1016/j.apm.2021.02.006
Crossref
Google Scholar
Gamelas, C. A., Canha, N., Vicente, A., Silva, A., Borges, S., Alves, C., Kertesz, Z., & Almeida, S. M. (2023). Source apportionment of PM2.5 before and after COVID-19 lockdown in an urban-industrial area of the Lisbon metropolitan area, Portugal. Urban Climate, 49(1), 41–50. https://doi.org/10.1016/j. uclim.2023.101446
Crossref
Google Scholar
Gomez Selvaraj, M., Vergara, A., Montenegro, F., Alonso Ruiz, H., Safari, N., Raymaekers, D., Ocimati, W., Ntamwira, J., Tits, L., Omondi, A.B., & Blomme, G. Gomez Selvaraj, M., Vergara, A., Montenegro, F., Alonso Ruiz, H., Safari, N., & Guy-Blomme, A. (2020). Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin. Journal of Photogrammetry and Remote Sensing, 169, 110–124. https://doi.org/10.1016/j. isprsjprs.2020.08.025
Crossref
Google Scholar
Gong, J. (2010). Clarifying the Standard Deviational Ellipse. Geographical Analysis, 34(2), 155–167. https:// doi.org/10.1111/j.1538-4632.2002.tb01082.x
Crossref
Google Scholar
Huang, J., & Kwan, M.-P. (2023). Associations between COVID-19 risk, multiple environmental exposures, and housing conditions: A study using individual-level GPS-based real-time sensing data. Applied Geography, 153(1), 120–132. https://doi.org/10.1016/j. apgeog.2023.102904
Crossref
Google Scholar
Isaza, V., Parizadi, T. & Isazade, E. (2023). Spatio-temporal analysis of the COVID-19 pandemic in Iran. Spatial Information Research, 31, 315–328. https://doi. org/10.1007/s41324-022-00488-9
Crossref
Google Scholar
Juneau, C. E., Briand, A. S., Collazzo, P., Siebert, U., & Pueyo, T. (2023). Effective contact tracing for COVID-19: A systematic review. Global Epidemiology, 5, 100103. https://doi.org/10.1016/j.gloepi.2023.100103
Crossref
Google Scholar
Kalbus, A., Ballatore, A., Cornelsen, L., Greener, R., & Cummins, S. (2023). Associations between area deprivation and changes in the digital food environment during the COVID-19 pandemic: Longitudinal analysis of three online food delivery platforms. Health & Place, 80, 102976. https://doi. org/10.1016/j.healthplace.2023.102976
Crossref
Google Scholar
Kazi, A. W., Summer, R., Sundaram, B., & George, G. (2023). Lung recovery with prolonged ECMO following fibrotic COVID-19 acute respiratory distress syndrome. The American Journal of the Medical Sciences, 365(3), 307–312. https://doi.org/10.1016/j. amjms.2022.12.008
Crossref
Google Scholar
Kolebaje, O. T., Vincent, O. R., Vincent, U. E., & McClintock, P. V. E. (2022). Nonlinear growth and mathematical modelling of COVID-19 in some African countries with the Atangana–Baleanu fractional derivative. Communications in Nonlinear Science and Numerical Simulation, 105(3), 60–76. https://doi.org/10.1016/j.cnsns.2021.106076
Crossref
Google Scholar
Krauss, J. E., Castro, E., Jr, Kingman, A., Nuvunga, M., & Ryan, C. (2023). Understanding livelihood changes in the charcoal and baobab value chains during Covid-19 in rural Mozambique: The role of power, risk and civic-based stakeholder conventions. Geoforum; Journal of Physical, Human, and Regional Geosciences, 140, 103706. https://doi.org/10.1016/j. geoforum.2023.103706
Crossref
Google Scholar
Lu, Y., Okpani, A. I., McLeod, C. B., Grant, J. M., & Yassi, A. (2023). Masking strategy to protect healthcare workers from COVID-19: An umbrella meta-analysis. Infection, Disease & Health, 28(3), 226–238. https:// doi.org/10.1016/j.idh.2023.01.004
Crossref
Google Scholar
Ma, L., Li, H., Lan, J., Hao, X., Liu, H., Wang, X., & Huang, Y. (2021). Comprehensive analyses of bioinformatics applications in the fight against COVID-19 pandemic. Computational Biology and Chemistry, 95(3), 76–89. https://doi.org/10.1016/j.compbiolchem.2021.107599
Crossref
Google Scholar
Ma, S., Li, S., & Zhang, J. (2021). Diverse and nonlinear influences of built environment factors on COVID-19 spread across townships in China at its initial stage. Scientific Reports, 11, 12415. https://doi.org/10.1038/ s41598-021-91849-1
Crossref
Google Scholar
Miethke-Morais, A., Cassenote, A., Piva, H., Tokunaga, E., Cobello, V., Rodrigues Gonçalves, F. A., Lobo, R.S., Trindade, E., D`Albuquerque, L.A., & Haddad, L. (2021). COVID-19-related hospital cost-outcome analysis: The impact of clinical and demographic factors. The Brazilian Journal of Infectious Diseases, 25(4), 101–109. https://doi.org/10.1016/j. bjid.2021.101609
Crossref
Google Scholar
Montoya, A., Lozano, R., Sanchez-Dominguez, M., Fritz, J., & Lamadrid-Figueroa, H. (2023). Burden, Incidence, Mortality and Lethality of Maternal Disorders in Mexico 1990-2019: An Analysis for the Global Burden of Disease Study 2019. Archives of Medical Research, 54(2), 152–159. https://doi. org/10.1016/j.arcmed.2022.12.013
Crossref
Google Scholar
Moore, T. W., & McGuire, M. P. (2019). Using the standard deviational ellipse to document changes to the spatial dispersion of seasonal tornado activity in the United States. Climate and Atmospheric Science, 2(21), 24–32. https://doi.org/10.1038/s41612-019-0078-4
Crossref
Google Scholar
Mungmunpuntipantip, R., & Wiwanitkit, V. (2023). SARS-CoV-2 in cats from military bases: correspondence. Comparative Immunology, Microbiology and Infectious Diseases, 92, 101913. https://doi.org/10.1016/j. cimid.2022.101913
Crossref
Google Scholar
Nojomi, M., Moradi-Lakeh, M., & Pourmalek, F. (2021). COVID-19 in Iran: What was done and what should be done? Medical Journal of The Islamic Republic of Iran, 35, 97. https://doi.org/10.47176/mjiri.35.97
Crossref
Google Scholar
Ortiz, L., Mustafa, A., Herreros Cantis, P., & McPhearson, T. (2022). Overlapping heat and COVID-19 risk in New York City. Urban Climate, 41(2), 18–27. https:// doi.org/10.1016/j.uclim.2021.101081
Crossref
Google Scholar
Rahnama, M.R., & Bazargan, M. (2020). Analysis of spatio-temporal patterns of Covid-19 virus pandemic and its hazards in Iran. Environmental Management Hazards, 7(2), 113-127. https://doi.org/10.22059/ jhsci.2020.304976.571
Google Scholar
Ramos, S. D., Kannout, L., Khan, H., Klasko-Foster, L., Chronister, B., & Du Bois, S. (2023). A Neighborhood-level analysis of mental health distress and income inequality as quasi-longitudinal risk of reported COVID-19 infection and mortality outcomes in Chicago. Dialogues in Health, 2(3), 82–91. https://doi. org/10.1016/j.dialog.2022.10009 1
Crossref
Google Scholar
Raoofi, A., Takian, A., Akbari Sari, A., Olyaeemanesh, A., Haghighi, H., & Aarabi, M. (2020). COVID-19 Pandemic and Comparative Health Policy Learning in Iran. Archives of Iranian Medicine, 23(4), 220–234. https://doi.org/10.34172/aim.2020.02
Crossref
Google Scholar
Shang Wui, C., & Jahanbani Ghahfarokhi, A. (2022). Adaptive Proxy-based Robust Production Optimiza¬tion with Multilayer Perceptron. Applied Computing
Google Scholar
and Geosciences, 16(2), 90–97. https://doi.org/10.1016/j. acags.2022.100103
Crossref
Google Scholar
Sharifi, H., Jahani, Y., Mirzazadeh, A., Ahmadi Gohari, M., Nakhaeizadeh, M., Shokoohi, M., Eybpoosh, S., Tohidinik, H. R., Mostafavi, E., Khalili, D., Hashemi Nazari, S. S., Karamouzian, M., & Haghdoost, A. A. (2022). Estimating COVID-19- Related Infections, Deaths, and Hospitalizations in Iran under Different Physical Distancing and Isolation Scenarios. International Journal of Health Policy and Management, 11(3), 334–343. https://doi.org/10.34172/ ijhpm.2020.134
Crossref
Google Scholar
Shen, F., Zhang, L., Jiang, L., Tang, M., Gai, X., Chen, M., & Ge, X. (2020). Temporal variations of six ambient criteria air pollutants from 2015 to 2018, their spatial distributions, health risks and relationships with socioeconomic factors during 2018 in China. Environment International, 137, 105556. https://doi. org/10.1016/j.envint.2020.105556
Crossref
Google Scholar
Sidwell, R.W., & Smee, D.F. (2004). Experimental disease models of influenza virus infections: recent developments. Drug Discovery Today: Disease Models, 1, 57–63. https://doi.org/10.1016/j.ddmod.2004.01.003
Crossref
Google Scholar
Takefuji, Y. (2023). Time-series COVID-19 policymaker analysis of the UAE, Taiwan, New Zealand, Japan and Hungary. Dialogues in Health, 1(4), 101–108. https:// doi.org/10.1016/j.dialog.2022.100081
Crossref
Google Scholar
Tu, Y., Hayat, T., Hobiny, A., & Meng, X. (2023). Modeling and multi-objective optimal control of reaction-diffu¬sion COVID-19 system due to vaccination and patient isolation. Applied Mathematical Modelling, 118(1), 556–591. https://doi.org/10.1016/j.apm.2023.02.002
Crossref
Google Scholar
Wang, B., Shi, W., & Miao, Z. (2015). Confidence analysis of standard deviational ellipse and its extension into higher dimensional Euclidean space. Plos One, 10(3), e0118537. https://doi.org/10.1371/journal. pone.0118537
Crossref
Google Scholar
Wu, J., Shen, Z., Li, Q., Tarimo, C. S., Wang, M., Gu, J., Wei, W., Zhang, X., Huang, Y., Ma, M., Xu, D., Ojangba, T., & Miao, Y. (2023). How urban versus rural residency relates to COVID-19 vaccine hesitancy: A large-scale national Chinese study. Social Science & Medicine, 320, 115695. https://doi. org/10.1016/j.socscimed.2023.115695
Crossref
Google Scholar
Wu, J., Williams, A., Wang, L., Henningsen, N., & Kitchen, P. (2023). Impacts of the COVID-19 pandemic on career-employees’ well-being: a twelve-country comparison. Wellbeing, Space and Society, 4(1), 23–31. https://doi.org/10.1016/j.wss.2022.100123
Crossref
Google Scholar
Yao, T., Foo, C., Zheng, G., Huang, R., Li, Q., Shen, J., & Wang, Z. (2023). Insight into the mechanisms of coronaviruses evading host innate immunity. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1869(5), 166671. https://doi.org/10.1016/j. bbadis.2023.166671
Crossref
Google Scholar
Zhu, Q., Zhang, Y., Kang, J., Chen, Z., Peng, M., Chen, M., Zhang, G., Xiang, D., Xiao, S., Li, H., Mei, Y., Yang, J., Qi, X., Cai, D., & Ren, H. (2023). Weakened humoral and cellular immune response to the inactivated COVID-19 vaccines in Chinese individuals with obesity/overweight. Genes & Diseases, 10(2), 608–617. https://doi.org/10.1016/j.gendis.2022.10.023
Crossref
Google Scholar