The Stand characteristics of the GTM 400 MOD turbojet engine
Lukasz Brodzik
Poznan University of TechnologyAbstract
Miniaturization of turbine jet engines not only enables testing of fuel mixtures but also opens up new possibilities for their use in smaller aircraft. In this work, measurements were carried out in the GTM 400 MOD engine in order to create the stand characteristics of unit thrust and specific fuel consumption. For both parameters, polynomials were determined describing their changes in the range of rotational speeds used. These calculations constitute the first stage of research on a hybrid turbojet engine powered by aviation kerosene and hydrogen. The reason for the research is to check the possibility of using hydrogen in turbomachinery engines. Hydrogen is one of the fuel additives approved for use by the European Union, which forces the aviation industry to reduce exhaust emissions into the atmosphere. Hydrogen can not only enrich aviation kerosene but also become an alternative fuel.
Keywords:
turbojet engine, specific thrust, specific fuel consumptionReferences
CAPOCCITTI S., KHARE A., MILDENBERGER U. 2010. Aviation Industry – Mitigating Climate Change Impacts through Technology and Policy. Journal of Technology Management & Innovation, 5(2): 66-75. https://doi.org/10.4067/S0718-27242010000200006 Google Scholar
CHACHURSKI R., TRZECIAK A., JĘDROWIAK B. 2018. Comparison of the Results of Mathematical Modeling of a GTM 120 Miniature Turbine Jet Engine with the Research Results. Combustion Engines, 173(2): 30-33. https://doi.org/10.19206/CE-2018-205 Google Scholar
DOUGLAS R., SAARLAS A. 1996. An Introduction to Aerospace Propulsion. Prentice Hall, Upper Saddle River, New Jersey. Google Scholar
FLEUTI E. 2005. Aircraft Ground Handling Emissions at Zurich Airport. AERONET WorkShhop, Stockholm. Google Scholar
GŁOWACKI P., SZCZECIŃSKI S. 2011. Turbinowy silnik odrzutowy jako źródło zagrożeń ekologicznych. Prace Instytutu Lotnictwa, 4(213): 252-257. Google Scholar
KOTLARZ W. 2004. Turbinowe zespoły napędowe źródłem skażeń powietrza na lotniskach wojskowych. Air Forces Academy, Dęblin. Google Scholar
KOTLARZ W., RYPULAK J., PIASECZNY L., ZADRĄG R. 2006. Testy toksyczności spalin turbinowego silnika lotniczego dla warunków startu i lądowania [Tests of exhaust gas toxicity of jet turbine engine for take off and landing phases of flight]. Combustion Engines, 127(4): 61-73. Google Scholar
LEFEBRE A. 1998. Gas Turbine Combustion. Second Edition. Taylor & Francis, Philadelphia. Google Scholar
MATTINGLY J.D. 1996. Elements of Gas Turbine Propulsion. McGraw-Hill, New York. Google Scholar
RAMANATHAN V., FENG Y. 2009. Air Pollution, Greenhouse Gases and Climate Change: Global and Regional Perspectives. Atmospheric Environment, 43(1): 37-50. https://doi.org/10.1016/j.atmosenv.2008.09.063 Google Scholar
ROGERS G.F.C., STRAZNICKY P., COHEN H., SARAVANAMUTTOO H.I.H., NIX A. 2017. Gas Turbine Theory. 7th Edition. Pearson, London. Google Scholar
ROTARU C. 2017. Analysis of Turbojet Combustion Chamber Performances Based on Flow Field Simplified Mathematical Model. AIP Conference Proceedings, 1836(1): 020047. https://doi.org/10.1063/1.4981987 Google Scholar
SANKAR B., GOUDA G., JANA S., IYENGAR V.S. 2020. Study of Design Modification Effects through Performance Analysis of a Legacy Gas Turbine Engine. Journal of Aerospace Technology and Management, 12: e0720. https://doi.org/10.5028/jatm.v12.1097 Google Scholar
SCHUMANN U. 2005. Formation, Properties and Climatic Effects of Contrails. Deutsches Zentrum fiir Luft- und Raumfahrt, Köln. Google Scholar
Poznan University of Technology