The Stand characteristics of the GTM 400 MOD turbojet engine

Lukasz Brodzik

Poznan University of Technology


Abstract

Miniaturization of turbine jet engines not only enables testing of fuel mixtures but also opens up new possibilities for their use in smaller aircraft. In this work, measurements were carried out in the GTM 400 MOD engine in order to create the stand characteristics of unit thrust and specific fuel consumption. For both parameters, polynomials were determined describing their changes in the range of rotational speeds used. These calculations constitute the first stage of research on a hybrid turbojet engine powered by aviation kerosene and hydrogen. The reason for the research is to check the possibility of using hydrogen in turbomachinery engines. Hydrogen is one of the fuel additives approved for use by the European Union, which forces the aviation industry to reduce exhaust emissions into the atmosphere. Hydrogen can not only enrich aviation kerosene but also become an alternative fuel.


Keywords:

turbojet engine, specific thrust, specific fuel consumption


CAPOCCITTI S., KHARE A., MILDENBERGER U. 2010. Aviation Industry – Mitigating Climate Change Impacts through Technology and Policy. Journal of Technology Management & Innovation, 5(2): 66-75. https://doi.org/10.4067/S0718-27242010000200006   Google Scholar

CHACHURSKI R., TRZECIAK A., JĘDROWIAK B. 2018. Comparison of the Results of Mathematical Modeling of a GTM 120 Miniature Turbine Jet Engine with the Research Results. Combustion Engines, 173(2): 30-33. https://doi.org/10.19206/CE-2018-205   Google Scholar

DOUGLAS R., SAARLAS A. 1996. An Introduction to Aerospace Propulsion. Prentice Hall, Upper Saddle River, New Jersey.   Google Scholar

FLEUTI E. 2005. Aircraft Ground Handling Emissions at Zurich Airport. AERONET WorkShhop, Stockholm.   Google Scholar

GŁOWACKI P., SZCZECIŃSKI S. 2011. Turbinowy silnik odrzutowy jako źródło zagrożeń ekologicznych. Prace Instytutu Lotnictwa, 4(213): 252-257.   Google Scholar

KOTLARZ W. 2004. Turbinowe zespoły napędowe źródłem skażeń powietrza na lotniskach wojskowych. Air Forces Academy, Dęblin.   Google Scholar

KOTLARZ W., RYPULAK J., PIASECZNY L., ZADRĄG R. 2006. Testy toksyczności spalin turbinowego silnika lotniczego dla warunków startu i lądowania [Tests of exhaust gas toxicity of jet turbine engine for take off and landing phases of flight]. Combustion Engines, 127(4): 61-73.   Google Scholar

LEFEBRE A. 1998. Gas Turbine Combustion. Second Edition. Taylor & Francis, Philadelphia.   Google Scholar

MATTINGLY J.D. 1996. Elements of Gas Turbine Propulsion. McGraw-Hill, New York.   Google Scholar

RAMANATHAN V., FENG Y. 2009. Air Pollution, Greenhouse Gases and Climate Change: Global and Regional Perspectives. Atmospheric Environment, 43(1): 37-50. https://doi.org/10.1016/j.atmosenv.2008.09.063   Google Scholar

ROGERS G.F.C., STRAZNICKY P., COHEN H., SARAVANAMUTTOO H.I.H., NIX A. 2017. Gas Turbine Theory. 7th Edition. Pearson, London.   Google Scholar

ROTARU C. 2017. Analysis of Turbojet Combustion Chamber Performances Based on Flow Field Simplified Mathematical Model. AIP Conference Proceedings, 1836(1): 020047. https://doi.org/10.1063/1.4981987   Google Scholar

SANKAR B., GOUDA G., JANA S., IYENGAR V.S. 2020. Study of Design Modification Effects through Performance Analysis of a Legacy Gas Turbine Engine. Journal of Aerospace Technology and Management, 12: e0720. https://doi.org/10.5028/jatm.v12.1097   Google Scholar

SCHUMANN U. 2005. Formation, Properties and Climatic Effects of Contrails. Deutsches Zentrum fiir Luft- und Raumfahrt, Köln.   Google Scholar

Download


Published
2024-06-03

Cited by

Brodzik, L. (2024). The Stand characteristics of the GTM 400 MOD turbojet engine. Technical Sciences, 27(27), 105–112. https://doi.org/10.31648/ts.10159

Lukasz Brodzik 
Poznan University of Technology



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->