Operation and challenges of biogas technology: A fundamental overview
Agnieszka Pilarska
Poznań Uniwersity of Life Sciences, Faculty of Environmental and Mechanical EngineeringKrzysztof Pilarski
Abstract
The modern world is facing a huge energy crisis related to the depletion of conventional energy sources. Therefore, obtaining energy from alternative sources is sparking increasing interest, expressed by both scientists and entrepreneurs. One such source is biogas, which has great potential to become, along with wind and solar energy, an important renewable energy source (RES). The development of biogas production should proceed in a sustainable manner, meaning it should be economically stable and minimize negative environmental impacts. Its goal is to create efficient and eco-friendly energy solutions – largely based on the use of organic waste – that support a circular economy and help reduce greenhouse gas emissions. Achieving these conditions, however, requires addressing technical challenges, which often include the need to optimize biomass processing and invest in new technologies, issues with substrate heterogeneity, gas management and purification, digestate management, as well as infrastructure and scalability concerns. Sustainable biogas development thus requires solutions to these technical and infrastructure challenges, as well as support from policy and local communities.
Keywords:
anaerobic digestion, organic waste, biogas composition, digestate properties, biogas plant operation, achievements and challengesReferences
APPELS L., BAEYENS J., DEGRÈVE J. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6): 755-781.
Crossref
Google Scholar
BĄKOWSKI K. 2020. Sieci i instalacje gazowe. Poradnik projektowania, budowy i eksploatacji. Wydawnictwo Naukowe PWN, Warszawa. Google Scholar
BIERNAT K. 2010. Biopaliwa – definicje i wymagania obowiązujące w Unii Europejskiej. Czysta Energia, 10: 25-28. Google Scholar
BHARATHIRAJA B., SUDHARSANAA T., BHARGHAVI A., JAYAMUTHUNAGAI J., PRAVEENKUMAR R. 2016. Biohydrogen and Biogas – An overview on feedstocks and enhancement process. Fuel, 185: 810-828.
Crossref
Google Scholar
CHEN Y., JAY J., CHENG J.J., CREAMER K.S. 2008. Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99: 4044-4064.
Crossref
Google Scholar
CHEN J.L., ORTIZ R., STEELE T.W.J., STUCKEY D.C. 2014. Toxicants inhibiting anaerobic digestion: A review. Biotechnology Advances, 32: 1523-1534.
Crossref
Google Scholar
COLONNA P. 2011. Biomass, biogas and biofuels. General Nuclear Review (Revue Générale Nucléaire), 3: 58-64
Crossref
Google Scholar
GADIRLI G., PILARSKA A.A., DACH J., PILARSKI K., KOLASA-WIĘCEK A., BOROWIAK K. 2024. Fundamentals, operation and global prospects for the development of biogas plants – A review. Energies, 17: 568.
Crossref
Google Scholar
HÄFNER F., HARTUNG J., MÖLLER K. 2022. Digestate composition afecting N fertiliser value and C mineralisation. Waste and Biomass Valorization, 13: 3445-3462.
Crossref
Google Scholar
IGLIŃSKI B., PIECHOTA G., IWAŃSKI P., SKARZATEK M., PILARSKI G. 2020. 15 Years of Polish agricultural biogas plants: their history, current status, biogas potential and perspectives. Clean Technologies and Environmental Policy, 22(1): 281-307.
Crossref
Google Scholar
KOTHARI R., PANDEY A.K., KUMAR S., TYAGI V.V., TYAGI S.K. 2014. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renewable and Sustainable Energy Reviews, 39: 174-195.
Crossref
Google Scholar
KOC-JURCZYK J., JURCZYK Ł., WANOWICZ D. 2020. Wykorzystywanie komunalnych osadów ściekowych jako źródła energii elektrycznej. Polish Journal for Sustainable Development, 24(2): 54-62.
Crossref
Google Scholar
KORBAG I., OMER S.M.S., BOGHAZALA H., ABUSASIYAH M.A.A. 2020. Recent advances of biogas production and future perspective. In: Biogas – recent advances and integrated approaches. Eds. A. El-Fatah Abomohra, M. Elsayed, Z. Qin, H. Ji, Z. Liu. IntechOpen. http://dx.doi.org/10.5772/intechopen.93231
Crossref
Google Scholar
KWAŚNY J., BANACH M., KOWALSKI Z. 2012. Przegląd technologii produkcji biogazu różnego pochodzenia. Czasopismo Techniczne. Chemia, 109(2): 83-102. Google Scholar
LEITE A.F., JANKE L., LV Z., HARMS H., RICHNOW H.H., NIKOLAUSZ M. 2015. Improved monitoring of semi-continuous anaerobic digestion of sugarcane waste: Effects of increasing organic loading rate on methanogenic community dynamics. International Journal Molecular Sciences, 16: 23210-23226.
Crossref
Google Scholar
LIMA D., APPLEYBY G., LI L. 2023. A scoping review of options for increasing biogas production from sewage sludge: challenges and opportunities for enhancing energy self-sufficiency in wastewater treatment plants. Energies, 16: 2369.
Crossref
Google Scholar
MASŁOŃ A., CZARNOTA J., SZAJA A., SZULŻYK-CIEPLAK J., ŁAGÓD G. 2020. The enhancement of energy efficiency in a wastewater treatment plant through sustainable biogas use: case study from Poland. Energies, 13: 6056.
Crossref
Google Scholar
MATA-ALVAREZ J., DOSTA J., ROMERO-GÜIZA M.S. 2014. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36: 412-427.
Crossref
Google Scholar
MATA-ALVAREZ J., MACÉ S., LLABRÉS P. 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1): 3-16.
Crossref
Google Scholar
MONTUSIEWICZ A. 2012. Współfermentacja osadów ściekowych i wybranych kosubstratów jako metoda efektywnej biometanizacji. Polska Akademia Nauk, Komitet Inżynierii Środowiska, Monografie, 98. Google Scholar
O’CONNOR S., EHIMEN E., PILLAI S.C., BLACK A., TORMEY D., BARLETT J. 2021. Biogas production from small-scale anaerobic digestion plants on European farms. Renewable and Sustainable Energy Reviews, 139: 110580.
Crossref
Google Scholar
PILARSKA A.A. 2018. Anaerobic co-digestion of waste wafers from confectionery production with sewage sludge. Polish Journal of Environmental Studies, 27(1): 237-245.
Crossref
Google Scholar
PILARSKA A.A., PILARSKI K., WALISZEWSKA B., ZBOROWSKA M., WITASZEK K., WALISZEWSKA H., KOLASIŃSKI M., SZWARC-RZEPKA K. 2019a. Evaluation of bio-methane yields for high-energy organic waste and sewage sludge: A pilot-scale study for a wastewater treatment plant. Environmental Engineering Management Journal, 18: 2019-2030.
Crossref
Google Scholar
PILARSKA A.A., PILARSKI K., WITASZEK K., WALISZEWSKA H., ZBOROWSKA M., WALISZEWSKA B., KOLASIŃSKI M., SZWARC-RZEPKA K. 2016. Treatment of dairy waste by anaerobic digestion with sewage sludge. Ecological Chemistry and Engineering Society, 23: 99-115.
Crossref
Google Scholar
PILARSKA A.A., PILARSKI K., WOLNA-MARUWKA A., BONIECKI P., ZABOROWICZ M. 2019b. Use of confectionery waste in biogas production by the AD process. Molecules, 24: 37.
Crossref
Google Scholar
PILARSKI K., PILARSKA A.A., KOLASA-WIĘCEK A., SUSZANOWICZ D. 2023. An agricultural biogas plant as a thermodynamic system: A study of efficiency in the transformation from primary to secondary energy. Energies, 16: 7398.
Crossref
Google Scholar
RAJAGOPAL R., MASSÉ D.I., SINGH G. 2013. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143: 632-641. Google Scholar
Raport 2022 KSE. Zestawienie danych ilościowych dotyczących funkcjonowania KSE w 2022 roku. 2022. Polskie Sieci Elektroenergetyczne. Retrieved from https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-roczne-z-funkcjonowania-kse-za-rok/raporty-za-rok-2022 Google Scholar
Register of energy companies producing agricultural biogas. 2018. KOWR – Krajowy Ośrodek Wsparcia Rolnictwa. Retrieved from www.kowr.gov.pl/uploads/pliki/oze/biogaz/7.%20Rejestr%20wytw%C3%B3rc%C3%B3w%20biogazu%20rolniczego%20z%20dni a%2005.01.2018%20r.pdf Google Scholar
RYCKEBOSCH E., DROUILLON M., VERVAEREN H. 2011. Techniques for transformation of biogas to biomethane. Biomass and Bioenergy, 35(5): 1633-1645.
Crossref
Google Scholar
ROGOWSKA D., BERDECHOWSKI K. 2013. Ocena wpływu sposobu alokacji emisji w procesie produkcji biopaliwa na wartość emisji gazów cieplarnianych. Nafta–Gaz, 69(3): 226-234. Google Scholar
SCHATTAUER A., WEILAND P. 2005. Basic knowledge of anaerobic digestion. In: Biogas – production and use. Institut für Energetik und Umwelt, Leipzig. Google Scholar
STRIK D.P.B.T.B., DOMNANOVICH A.M., HOLUBAR P. 2006. A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochemistry, 41: 1235-1238.
Crossref
Google Scholar
SZCZYRBA P., MASŁOŃ A., CZARNOTA J., OLSZEWSKI K. 2020. Analiza gospodarki osadowej i biogazowo-energetycznej w oczyszczalni ścieków w Opolu. Ecological Engineering, 21(2): 26-34.
Crossref
Google Scholar
SZEWCZYK P. 2020. Biogaz produkowany z odpadów komunalnych. Biomasa, 10(72). Google Scholar
WANG P., WANG H., QIU Y., REN L., JIANG B. 2018. Microbial characteristics in anaerobic digestion process of food waste for methane production – A review. Bioresource Technology, 248: 29-36.
Crossref
Google Scholar
WEILAND P., DE MES T., VERSTRAETE W. 2001. Biogas production through anaerobic digestion of biomass: The Dutch case. Biomass and Bioenergy, 21(6): 419-428 Google Scholar
WORWĄG M., BIEŃ J., ZAWIEJA I. 2010. Zespoły mikroorganizmów w procesach beztlenowej stabilizacji osadów. Proceedings of ECOpole, 4(2): 515-522. Google Scholar
YENIGÜN O., DEMIREL B. 2013. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143: 632-641.
Crossref
Google Scholar
ZAPAŁOWSKA A., GACEK T. 2019. Ekonomiczne aspekty pozyskiwania i wykorzystania biogazu. Polish Journal for Sustainable Development, 23(2): 81-89.
Crossref
Google Scholar
ZDEBIK D., GŁODNIOK M., KORCZAK K. 2010. Analiza możliwości wykorzystania biogazu do produkcji ciepła i energii elektrycznej na przykładzie oczyszczalni ścieków w Rybniku. Prace Naukowe GIG. Górnictwo i Środowisko, 3: 87-97. Google Scholar
ŻYGADŁO M., MADEJSKI R. 2016. The conversion of biomas into energy in farm biogas plant. Archives of Waste Management and Environmental Protection, 18(2): 55-66. Google Scholar
Poznań Uniwersity of Life Sciences, Faculty of Environmental and Mechanical Engineering