Battery Supercharging System in Electrical Vehicles Using Photovoltaic Panels

Zenon Syroka

UWM


Abstract

In this project, a system was designed there was designed a system for charging batteries in electric vehicles using photovoltaic panels. Low cost of operation, cheap reliable construction and simple user interface were among the main criterias taken into account.

Each energy source was carefully selected and, modules were used so that they could in the way to power the microcontroller and charge the energy storage source.

This article is a part of a project related to the design of digital control devices with electric drives carried out at the UWM.


Keywords:

digital control, motor controller, electric and hybrid vehicles, microcontroller

ALI E., KHALIGH A., NIE Z., LEE Y.J. 2009. Integrated Power Electronic Converters and Digital Control. CRC Press, Boca Raton.   Google Scholar

BOLTON W. 2006. Programmable Logic Controllers. Elsevier, Amsterdam, Boston.   Google Scholar

BUSO S., MATTAVELLI P. 2006. Digital Control in Power Electronics. Morgan & Claypool Publisher, San Rafael, CA.   Google Scholar

CHEN C.-T. 1991. Analog and Digital Control system Design: Transfer Function, State Space, and Algebraic Methods. Saunders College Publishing, Filadelfia, Pensylwania.   Google Scholar

DENTON T. 2016. Electric and Hybrid Vehicles. Routledge, San Diego.   Google Scholar

DORF R.C., BISHOP R.H. 2008. Modern Control System Solution Manual. Prentice Hall, New Jersey.   Google Scholar

FADALI S. 2009. Digital Control Engineering, Analysis and Design. Elsevier, Burlington.   Google Scholar

FEUER A., GOODWIN G.C. 1996. Sampling in Digital Signal Processing and Control. Brikhauser, Boston.   Google Scholar

GABOR R., KOWOL M., KOŁODZIEJ J., KMIECIK S., MYNAREK P. 2019. Switchable reluctance motor, especially for the bicycle. Patent No. 231882.   Google Scholar

GREGORY P. 2006. Starr Introduction to Applied Digital Control. Gregory P. Starr, New Mexico.   Google Scholar

GLINKA T., FRĘCHOWICZ A. 2007. Brushless DC motor speed control system. Patent No. P.195447.   Google Scholar

HUSAIN I. 2003. Electric and Hybrid Vehicles, Design Fundamentals. CRC Press LLC, Boca Raton, London.   Google Scholar

JONGSEONG J., WONTAE J. 2019. Method of controlling constant current of brushless dc motor and controller of brushless dc motor using the same. United States Patent Application Publication, US2018323736 (A1).   Google Scholar

KHAJEPOUR A., FALLAH S., GOODARZI A. 2014. Electric and Hybrid Vehicles Technologies, Modeling and Control: a Mechatronic Approach. John Wiley & Sons Ltd, Chichester.   Google Scholar

KOLANO K. 2020. Method for measuring the angular position of the shaft of a brushless DC motor with shaft position sensors. Patent No. P.235653.   Google Scholar

KOJIMA N., ANNAKA T. 2019. Motor control apparatus and motor unit. United States Patent Application Publication, US2019047517 (A1).   Google Scholar

LANDAU I.D., ZITO G. 2006. Digital Control Systems Design, Identification and Implementation. Springer, London.   Google Scholar

LUECKE J. 2005. Analog and Digital Circuits for Electronic Control System Applications Using the TI MSP430 Microcontroller. Elsvier. Amsterdam, Boston.   Google Scholar

MI CH., MASRUR M.A., GAO D.W. 2011. Hybrid Electric Vehicles Principles and Applications with Practical Perspectives. John Wiley & Sons Ltd., Chichester.   Google Scholar

MOUDGALYA K.M. 2007. Digital Control. John Wiley & Sons Ltd., Chichester.   Google Scholar

MURRAY R.M., LI Z., SHANKAR SASTRY S. 1994. A Mathematical Introduction to Robotic Manipulation. CRC Press, Berkeley.   Google Scholar

OGATA K. 1995. Discrete Time Control Systems. Prentice-Hall, New Jersey.   Google Scholar

PISTOIA G. 2010. Electric and Hybrid Vehicles Power Sources, Models, Sustainability, Infrastructure and the Market. Elsevier, Amsterdam, Boston.   Google Scholar

SIKORA A., ZIELONKA A. 2011. Power supply system for a BLDC motor. Patent No. P.394971.   Google Scholar

SOYLU S. 2011. Electric Vehicles – the Benefits and Barriers. Edited by Seref Soylu, Rijeka.   Google Scholar

STEVIĆ Z. 2013. New Generation of Electric Yehicles. Edited by Zoran Stević, Rijeka.   Google Scholar

SYROKA Z.W., JAKOCIUK D. 2020. Battery recharging system in electric vehicle. Patent No. P.431380, filing date: 17 January 2020.   Google Scholar

SYROKA Z.W. 2019. Electric Vehicels – Digital Control. Scholars’ Press, Mauritius.   Google Scholar

ŚLUSAREK B., PRZYBYLSKI M., GAWRYŚ P. 2014. Hall effect sensor of the shaft position of the brushless DC motor. Patent No. P.218476.   Google Scholar

WILLIAMSON S.S. 2013. Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles. Springer, New York, London.   Google Scholar

Download


Published
2021-05-31

Cited by

Syroka, Z. (2021). Battery Supercharging System in Electrical Vehicles Using Photovoltaic Panels. Technical Sciences, 24(1), 27–38. https://doi.org/10.31648/ts.6210

Zenon Syroka 
UWM



License

Copyright (c) 2021 Zenon Syroka

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->