The use of the theory of nonholonomic constraints in the process of automatic control of a manipulating machine

Edyta Ładyżyńska-Kozdraś

a:1:{s:5:"en_US";s:31:"Warsaw University of Technology";}

Barbara Kozłowska

Warsaw University of Technology

Danyil Potoka


The presented study contains a sample of utilization of the control laws treated as kinematic relations of parameter deviations and realized in the process of ordered automatic control of a manipulating machine. Movement of the grasping end is considered in an inertial reference standard rigidly joined with an immobile working environment of the manipulator. The specificity of the control’s choice required creating program relations constituting the ordered parameters describing the movement of the manipulator’s elements. During work, the ordered parameters are compared to the parameters realized in the process of the grasping end’s work. This was deviations are determined, which thanks to properly prepared control laws are leveled by the manipulator’s control executive system.


automatic control, non-holonomic relations, control laws, manipulator

AJWAD S.A., IQBAL J., ULLAH M.I., MEHMOOD A. 2015. A systematic review of current and emergent manipulator control approaches. Frontiers of Mechanical Engineering, 10(2): 198-210.   Google Scholar

BERTONCELLI F., RUGGIERO F., SABATTINI L. 2020. Linear time-varying MPC for nonprehensile object manipulation with a nonholonomic mobile robot. In 2020 IEEE International Conference on Robotics and Automation (ICRA), p. 11032-11038.   Google Scholar

BI M. 2020. Control of Robot Arm Motion Using Trapezoid Fuzzy Two-Degree-of-Freedom PID Algorithm. Symmetry, 12(4): 665. doi: 10.3390/sym12040665.   Google Scholar

CAI J., DENG J., ZHANG W., ZHAO W. 2021. Modeling Method of Autonomous Robot Manipulator Based on DH Algorithm. Mobile Information Systems, 2021, Article ID 4448648, doi: 10.1155/2021/4448648.   Google Scholar

IVANOV S., ZUDILOVA T., VOITIUK T, IVANOVA L. 2020. Mathematical Modeling of the Dynamics of 3-DOF Robot-Manipulator with Software Control. Procedia Computer Science, 178: 311-319.   Google Scholar

JANKOWSKI K. 2005. Inverse Dynamics Control in Robotics Applications. Trafford Publishing: Bloomington, Canada.   Google Scholar

JARZEBOWSKA E., SANJUAN SZKLARZ P. 2017. Model-based control of a third-order nonholonomic system. Mathematics and Mechanics of Solids, 22(6): 1397-1406.   Google Scholar

KŁAK M., JARZĘBOWSKA E. 2021. Quaternion-Based Constrained Dynamics Modeling of a Space Manipulator with Flexible Arms for Servicing Tasks. Journal of Vibration Engineering & Technologies, 9(3): 381-387.   Google Scholar

ŁADYŻYŃSKA-KOZDRAŚ E. 2009. The control laws having a form of kinematic relations between deviations in the automatic control of a flying object. Journal of Theoretical and Applied Mechanics, 47(2): 363-381.   Google Scholar

ŁADYŻYŃSKA-KOZDRAŚ E. 2012. Modeling and numerical simulation of unmanned aircraft vehicle restricted by non-holonomic constraints. Journal of Theoretical and Applied Mechanics, 50(1): 251–268.   Google Scholar

NEJMARK J., FUFAJEW N. 1971. Dynamika układów nieholonomicznych. Wydawnictwo Naukowe PWN, Wrocław.   Google Scholar

NIZIOŁ J. 2005. Mechanika techniczna. Tom II. Dynamika układów mechanicznych. Wyd. Komitet Mechaniki PAN, IPPT PAN, Warszawa.   Google Scholar

SIBILSKA-MROZIEWICZ A., ŁADYŻYŃSKA-KOZDRAŚ E. 2018. Mathematical Model of Levitating Cart of Magnetic UAV Catapult. Journal of Theoretical and Applied Mechanics, 56(3): 793–802.   Google Scholar

SINGH P.K., KRISHNA C.M. 2014. Continuum arm robotic manipulator: A review. Universal Journal of Mechanical Engineering, 2(6): 193-198   Google Scholar

WEN Z., WANG Y., DI N., Chu G. 2015. Fast recognition of cooperative target used for position and orientation measurement of space station’s robot arm. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 36(4): 1330–1338.   Google Scholar



Cited by

Ładyżyńska-Kozdraś, E., Kozłowska, B., & Potoka, D. (2021). The use of the theory of nonholonomic constraints in the process of automatic control of a manipulating machine. Technical Sciences, 24(1), 221–228.

Edyta Ładyżyńska-Kozdraś 
a:1:{s:5:"en_US";s:31:"Warsaw University of Technology";}
Barbara Kozłowska 
Warsaw University of Technology
Danyil Potoka 


Copyright (c) 2021 Edyta Ładyżyńska-Kozdraś, Barbara Kozłowska, Danyil Potoka

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.