The use of the theory of nonholonomic constraints in the process of automatic control of a manipulating machine
Edyta Ładyżyńska-Kozdraś
a:1:{s:5:"en_US";s:31:"Warsaw University of Technology";}Barbara Kozłowska
Warsaw University of TechnologyDanyil Potoka
Abstract
The presented study contains a sample of utilization of the control laws treated as kinematic relations of parameter deviations and realized in the process of ordered automatic control of a manipulating machine. Movement of the grasping end is considered in an inertial reference standard rigidly joined with an immobile working environment of the manipulator. The specificity of the control’s choice required creating program relations constituting the ordered parameters describing the movement of the manipulator’s elements. During work, the ordered parameters are compared to the parameters realized in the process of the grasping end’s work. This was deviations are determined, which thanks to properly prepared control laws are leveled by the manipulator’s control executive system.
Keywords:
automatic control, non-holonomic relations, control laws, manipulatorReferences
AJWAD S.A., IQBAL J., ULLAH M.I., MEHMOOD A. 2015. A systematic review of current and emergent manipulator control approaches. Frontiers of Mechanical Engineering, 10(2): 198-210. Google Scholar
BERTONCELLI F., RUGGIERO F., SABATTINI L. 2020. Linear time-varying MPC for nonprehensile object manipulation with a nonholonomic mobile robot. In 2020 IEEE International Conference on Robotics and Automation (ICRA), p. 11032-11038. Google Scholar
BI M. 2020. Control of Robot Arm Motion Using Trapezoid Fuzzy Two-Degree-of-Freedom PID Algorithm. Symmetry, 12(4): 665. doi: 10.3390/sym12040665. Google Scholar
CAI J., DENG J., ZHANG W., ZHAO W. 2021. Modeling Method of Autonomous Robot Manipulator Based on DH Algorithm. Mobile Information Systems, 2021, Article ID 4448648, doi: 10.1155/2021/4448648. Google Scholar
IVANOV S., ZUDILOVA T., VOITIUK T, IVANOVA L. 2020. Mathematical Modeling of the Dynamics of 3-DOF Robot-Manipulator with Software Control. Procedia Computer Science, 178: 311-319. Google Scholar
JANKOWSKI K. 2005. Inverse Dynamics Control in Robotics Applications. Trafford Publishing: Bloomington, Canada. Google Scholar
JARZEBOWSKA E., SANJUAN SZKLARZ P. 2017. Model-based control of a third-order nonholonomic system. Mathematics and Mechanics of Solids, 22(6): 1397-1406. Google Scholar
KŁAK M., JARZĘBOWSKA E. 2021. Quaternion-Based Constrained Dynamics Modeling of a Space Manipulator with Flexible Arms for Servicing Tasks. Journal of Vibration Engineering & Technologies, 9(3): 381-387. Google Scholar
ŁADYŻYŃSKA-KOZDRAŚ E. 2009. The control laws having a form of kinematic relations between deviations in the automatic control of a flying object. Journal of Theoretical and Applied Mechanics, 47(2): 363-381. Google Scholar
ŁADYŻYŃSKA-KOZDRAŚ E. 2012. Modeling and numerical simulation of unmanned aircraft vehicle restricted by non-holonomic constraints. Journal of Theoretical and Applied Mechanics, 50(1): 251–268. Google Scholar
NEJMARK J., FUFAJEW N. 1971. Dynamika układów nieholonomicznych. Wydawnictwo Naukowe PWN, Wrocław. Google Scholar
NIZIOŁ J. 2005. Mechanika techniczna. Tom II. Dynamika układów mechanicznych. Wyd. Komitet Mechaniki PAN, IPPT PAN, Warszawa. Google Scholar
SIBILSKA-MROZIEWICZ A., ŁADYŻYŃSKA-KOZDRAŚ E. 2018. Mathematical Model of Levitating Cart of Magnetic UAV Catapult. Journal of Theoretical and Applied Mechanics, 56(3): 793–802. Google Scholar
SINGH P.K., KRISHNA C.M. 2014. Continuum arm robotic manipulator: A review. Universal Journal of Mechanical Engineering, 2(6): 193-198 Google Scholar
WEN Z., WANG Y., DI N., Chu G. 2015. Fast recognition of cooperative target used for position and orientation measurement of space station’s robot arm. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 36(4): 1330–1338. Google Scholar
a:1:{s:5:"en_US";s:31:"Warsaw University of Technology";}
Warsaw University of Technology