Effect of local airflow restriction in the intake system on the characteristics of a naturally aspirated spark-ignition engine

Michał Janulin

Katedra Budowy, Eksploatacji Pojazdów i Maszyn, Wydział Nauk Technicznych, Uniwersytet Warmińsko-Mazurski w Olsztynie

Szymon Piotr Kwiatkowski




Abstract

One of the most important elements influencing the functioning of internal combustion engines is the intake system, whose task is to supplycold, fresh and filtered air to the combustion chambers of the engine. So far, the capacity tests of the intake system have focused on the appropriate selection of its geometry and diameter, which had a direct impact on the airflow rate, and thus on the performance of the vehicle. In this article, the focus is on conducting research consisting of placing the airflow restriction element in a specific locationin the intake system of a naturally aspirated spark-ignition engine. After the necessary preparations, authors made measurements of the engine performance (power and torque) and airflow rate in the intake systemvia original MAF sensor mounted in intake system and Chassis Dynamometer Interface via OBD protocol. After the engine parameters were measured, the test results were compared with the reference characteristics obtained during the measurements prior to the modification of the stock intake system. The article is crowned by conclusions based on the results of the measurements.


Keywords:

intake system, chassis dynamometer, airflow restrictor, engine characteristics, BMW M54 engine parameters, SI engine


BAKUNIAK W. 2013. Flow simulations of the intake manifold for the Formula Student car. Poznan University of Technology, Poznań.   Google Scholar

BOODANUR R., PANWAR A., KULKARNI S.K., JADHAV A.B. 2019. Air intake system optimization for passenger car engine. SAE Technical Paper 2019-26-0044. https://doi.org/10.4271/2019-26-0044   Google Scholar

Chassis dynamometer for LPS3000 power control for passenger cars. User Manual D10523BA1-D01.   Google Scholar

CHEN C.W., DU W., SUN J.Q., LIU W., CHANG Y., DONG W. 2014. Simulation analysis and design of intake restrictor of FSAE race car. Applied Mechanics and Materials, 602: 751-756.   Google Scholar

COSTA C.R., DE MORAIS HANRIOT S., SODRE J.R. 2013. Influence of intake pipe length and diameter on the performance of a spark ignition engine. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(1): 29-35. https://doi.org/10.1007/s40430-013-0074-2   Google Scholar

ELSNER J.W. 1987. Turbulence of flows. PWN, Warszawa.   Google Scholar

ETZOLD H.-R. 2018. This is how it’s done: care – maintain – repair Belt 102: BMW 5 Series, Type E39, Sedan/Touring, from December 1995 to June 2003. Wydawnictwa Komunikacji i Łączności, Warszawa.   Google Scholar

HEISLER H. 1995. Advanced engine technology. Elsevier Science &Technology, Amsterdam.   Google Scholar

JEŻOWIECKA-KABSCH K., SZEWCZYK H. 2001. Mechanika płynów. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.   Google Scholar

KOŁODZIEJ S., HENNEK K. 2017. The effect of engine of intake system design on air distribution in the intake manifold. Autobusy, 6(18): 794-799.   Google Scholar

KOMORSKA I.M., WOŁCZYŃSKI Z., BORCZUCH A. 2018. Fault diagnostics in air intake system of combustion engine using virtual sensors. Diagnostyka, 19(1): 25-32. https://doi.org/10.29354/diag/80972   Google Scholar

NORIZAN A., RAHMAN M.T.A., AMIN N.A.M., BASHA M.H., ISMAIL M.H.N., HAMID A.F.A. 2017. Study of intake manifold for Universiti Malaysia Perlis automotive racing team formula student race car. Journal of Physics. Conference Series, 908(1): 012069.   Google Scholar

PATIL A.S., HALBE V.G., VORA K.C. 2005. A System Approach to Automotive Air Intake System Development. SAE Technical Paper 2005-26-011. https://doi.org/10.4271/2005-26-011   Google Scholar

SCHNEEHAGE G. 2017. Czujniki układu sterowania silnika w praktyce warsztatowej. Budowa, działanie i diagnozowanie za pomocą oscyloskopu. Wydawnictwa Komunikacji i Łączności, Warszawa.   Google Scholar

SHAH S.S., SINGH K., MARTIN L.J., JEROME STANLEY M. 2022. Design, Development, and Validation of an Intake System for an FSAE Racecar. In: Energy and Exergy for Sustainable and Clean Environment. Vol. 2. Eds. V.E. Geo, F. Aloui, p. 401-413. Springer Nature Singapore, Singapore.   Google Scholar

SHANNAK B., DAMSEH R., ALHUSEIN M. 2006. Influence of air intake pipe on engine exhaust emission. Forsch Ingenieurwes, 70: 128-132. https://doi.org/10.1007/s10010-006-0022-8   Google Scholar

SINGHAL A., PARVEEN M. 2013. Airflow optimization via a venturi type air restrictor. WCE, London.   Google Scholar

ŚWIĘCICKI K. 2015. Design of the intake system of an internal combustion engine. Institute of Fundamentals of Machine Design, Silesian University of Technology, Gliwice.   Google Scholar

Training documentation for the M54 engine M54engMS43/ST036/6/2000. Revision Date: 6/2000. BMW AG.   Google Scholar

ZAJĄC P. 2009. Silniki pojazdów samochodowych i podstawy budowy oraz główne zespoły i układy mechaniczne. Wydawnictwa Komunikacji i Łączności, Warszawa.   Google Scholar

Download


Published
2024-05-15

Cited by

Janulin, M., & Kwiatkowski, S. P. (2024). Effect of local airflow restriction in the intake system on the characteristics of a naturally aspirated spark-ignition engine. Technical Sciences, 27(27), 71–86. https://doi.org/10.31648/ts.9974

Michał Janulin 
Katedra Budowy, Eksploatacji Pojazdów i Maszyn, Wydział Nauk Technicznych, Uniwersytet Warmińsko-Mazurski w Olsztynie
Szymon Piotr Kwiatkowski 




License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->