Influence of rubber powder mass flow rate on process of plasma pyrolysis

Jarosław Szuszkiewicz


http://orcid.org/0000-0002-4490-3397


Abstract

The paper describes an experimental examination of the thermal utilization of used rubber. The research was carried out to examine the influence of rubber powder mass flow rate on the plasma pyrolysis of rubber. An arc plasma generator was applied. Ar and a mixture of Ar and H2 were used as plasma gases. The composition of gaseous products was analyzed by infrared absorption spectroscopy. All of the rubber introduced to the plasma jet was decomposed. The outgoing gas did not contain any toxic chemical compounds such as NOx or HCN.


Keywords:

plasma pyrolysis, rubber waste, thermal utilization, absorption spectroscopy


BIADASZ S. 2018. Practical Use of Rubber Recyclates as Approach to Environmental Protection. Ecological Engineering, 19(5): 63–74.   Google Scholar

CHAMOLLO GARCES J.C., PREVOSTO L., CEJAS E., KELLY H. 2018. Quantitative Schlieren Diagnostic Applied to a Nitrogen Thermal Plasma Jet. IEEE Transactions on Plasma Science, 99: 1-10.   Google Scholar

CHANG J., GU B., LOOY P., CHU F., SIMPSON C. 1996. Thermal Plasma Pyrolysis of Used Old Tires For Production of Syngas. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 31(7): 1781-1799.   Google Scholar

HUILIN L., XIAOPING W., DEMIN J. 2019. Recycling of waste rubber powder by mechano-chemical modification. Journal of Cleaner Production, 245: 118716. https://doi.org/10.1016/j.jclepro.2019.118716.   Google Scholar

LIANG M., CHANGJUN S., ZHANYONG Y., HONGUANG Y. 2020. Utilization of wax residue as compatibilizer for asphalt with ground tire rubber/recycled polyethylene blends. Construction and Building Materials, 230: 116966,   Google Scholar

MAJEWSKI T. 2011. Investigation of Plasma Modification Processes of W and Re Powders and W-Re Mixtures. Biuletyn WAT, LX(2): 231–237.   Google Scholar

MAJEWSKI T., DĘBSKI A. 2012. Investigation of Plasma Balling Processes of W-Re-Ni and W-Re-Ni-Fe Powder Mixtures. Inżynieria Materiałowa, 5: 464–468.   Google Scholar

MIKOŚ M. 1987. Low Power DC Plasmatron for Spraying, Patent PL 13990281. Urząd Patentowy Polskiej Rzeczypospolitej Ludowej, Warszawa.   Google Scholar

PAWŁOWSKA M. 2018. Potężny pożar w Trzebini. Pali się składowisko gumowych odpadów. Dziennik Polski 24. Region. Małopolska Zachodnia https://dziennikpolski24.pl/potezny-pozar-w-trzebini-pali-sie-skladowisko-gumowych-odpadow-zdjecia/ar/13209477 (access: 22.08. 2019),   Google Scholar

SOVJAK R., PEŠKOVÁ Š., ŠMILAUER V., MARA M., KONVALINKA P. 2019. Utilization of crumb rubber and FBC-based ternary binder in shotcrete lining. Case Studies in Construction Materials, 11: e00234.   Google Scholar

SZUSZKIEWICZ J. 2007. Application of Thermal Methods for Utilization of Used Tires. Motrol, 9: 178–183.   Google Scholar

SZUSZKIEWICZ J., MIZERACZYK J., DORS M. 2001. Plasma treatment of rubber waste. High Temperature Material Processes, 5(3): 345-348.   Google Scholar

TANG L., HUANG H. 2004. An investigation of sulfur distribution during thermal plasma pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis, 72(1): 35-40.   Google Scholar

WIELGOSIŃSKI G. 2011. Review of Technologies of Wastes Thermal Transformation. Nowa Energia, 1.   Google Scholar

WOJCIECHOWSKI A., DOLIŃSKI A. 2014. Diversification of Energy Sources from Material Recovery/Organic Materials Recycling. International Scientific Conference Energy and Environment Production-Logistics-Management, p. 11278-11288.   Google Scholar

Download


Published
2019-07-16

Cited by

Szuszkiewicz, J. (2019). Influence of rubber powder mass flow rate on process of plasma pyrolysis. Technical Sciences, 22(4), 305–318. https://doi.org/10.31648/ts.5131

Jarosław Szuszkiewicz 

http://orcid.org/0000-0002-4490-3397



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->