Influence of rubber powder mass flow rate on process of plasma pyrolysis
Abstrakt
The paper describes an experimental examination of the thermal utilization of used rubber. The research was carried out to examine the influence of rubber powder mass flow rate on the plasma pyrolysis of rubber. An arc plasma generator was applied. Ar and a mixture of Ar and H2 were used as plasma gases. The composition of gaseous products was analyzed by infrared absorption spectroscopy. All of the rubber introduced to the plasma jet was decomposed. The outgoing gas did not contain any toxic chemical compounds such as NOx or HCN.
Słowa kluczowe:
plasma pyrolysis, rubber waste, thermal utilization, absorption spectroscopyBibliografia
BIADASZ S. 2018. Practical Use of Rubber Recyclates as Approach to Environmental Protection. Ecological Engineering, 19(5): 63–74. Google Scholar
CHAMOLLO GARCES J.C., PREVOSTO L., CEJAS E., KELLY H. 2018. Quantitative Schlieren Diagnostic Applied to a Nitrogen Thermal Plasma Jet. IEEE Transactions on Plasma Science, 99: 1-10. Google Scholar
CHANG J., GU B., LOOY P., CHU F., SIMPSON C. 1996. Thermal Plasma Pyrolysis of Used Old Tires For Production of Syngas. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 31(7): 1781-1799. Google Scholar
HUILIN L., XIAOPING W., DEMIN J. 2019. Recycling of waste rubber powder by mechano-chemical modification. Journal of Cleaner Production, 245: 118716. https://doi.org/10.1016/j.jclepro.2019.118716. Google Scholar
LIANG M., CHANGJUN S., ZHANYONG Y., HONGUANG Y. 2020. Utilization of wax residue as compatibilizer for asphalt with ground tire rubber/recycled polyethylene blends. Construction and Building Materials, 230: 116966, Google Scholar
MAJEWSKI T. 2011. Investigation of Plasma Modification Processes of W and Re Powders and W-Re Mixtures. Biuletyn WAT, LX(2): 231–237. Google Scholar
MAJEWSKI T., DĘBSKI A. 2012. Investigation of Plasma Balling Processes of W-Re-Ni and W-Re-Ni-Fe Powder Mixtures. Inżynieria Materiałowa, 5: 464–468. Google Scholar
MIKOŚ M. 1987. Low Power DC Plasmatron for Spraying, Patent PL 13990281. Urząd Patentowy Polskiej Rzeczypospolitej Ludowej, Warszawa. Google Scholar
PAWŁOWSKA M. 2018. Potężny pożar w Trzebini. Pali się składowisko gumowych odpadów. Dziennik Polski 24. Region. Małopolska Zachodnia https://dziennikpolski24.pl/potezny-pozar-w-trzebini-pali-sie-skladowisko-gumowych-odpadow-zdjecia/ar/13209477 (access: 22.08. 2019), Google Scholar
SOVJAK R., PEŠKOVÁ Š., ŠMILAUER V., MARA M., KONVALINKA P. 2019. Utilization of crumb rubber and FBC-based ternary binder in shotcrete lining. Case Studies in Construction Materials, 11: e00234. Google Scholar
SZUSZKIEWICZ J. 2007. Application of Thermal Methods for Utilization of Used Tires. Motrol, 9: 178–183. Google Scholar
SZUSZKIEWICZ J., MIZERACZYK J., DORS M. 2001. Plasma treatment of rubber waste. High Temperature Material Processes, 5(3): 345-348. Google Scholar
TANG L., HUANG H. 2004. An investigation of sulfur distribution during thermal plasma pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis, 72(1): 35-40. Google Scholar
WIELGOSIŃSKI G. 2011. Review of Technologies of Wastes Thermal Transformation. Nowa Energia, 1. Google Scholar
WOJCIECHOWSKI A., DOLIŃSKI A. 2014. Diversification of Energy Sources from Material Recovery/Organic Materials Recycling. International Scientific Conference Energy and Environment Production-Logistics-Management, p. 11278-11288. Google Scholar