Evaluation of models for the dew point temperature determination
Krzysztof Górnicki
Radosław Winiczenko
Agnieszka Kaleta
Aneta Choińska
Abstrakt
The accuracy of the available from the literature models for the dew point temperature determination was compared. The proposal of the modelling using artificial neural networks was also given. The experimental data were taken from the psychrometric tables. The accuracies of the models were measured using the mean bias error MBE, root mean square error RMSE, correlation coefficient R, and reduced chi-square χ2. Model M3, especially with constants A=237, B=7.5, gave the best results in determining the dew point temperature (MBE: -0.0229 – 0.0038 K, RMSE: 0.1259 – 0.1286 K, R=0.9999, χ2: 0.0159 – 0.0166 K2). Model M1 with constants A=243.5, B=17.67 and A=243.3, B=17.269 can be also considered as appropriate (MBE=-0.0062 and -0.0078 K, RMSE=0.1277 and 0.1261 K, R=0.9999, χ2=0.0163 and 0.0159 K2). Proposed ANN model gave the good results in determining the dew point temperature (MBE=-0.0038 K, RMSE=0.1373 K, R=0.9999, χ2=0.0189 K2).
Słowa kluczowe:
dew point temperature, relative humidity, model, artificial neural networksBibliografia
AGHBASHLO M, KIANMEHR M.H, NAZGHELICHI T, RAFIEE S. 2011. Optimization of an artificial neural network topology for predicting drying kinetics of carrot cubes using combined response surface and genetic algorithm. Drying Technology, 29: 770–779. Google Scholar
AJ Design Software. Science Math Physics Engineering And Finance Calculators. Dew Point Equations Formulas Calculator. Meteorology Weather Water Vapor. http://www.ajdesigner.com/phphumidity/dewpoint–equation–dewpoint–temperature.php (access: 5.05.2016). Google Scholar
AMIRMOJAHEDI M., MOHAMMADI K., SHAMSHIRBAND S., DANESH A.S., MOSTAFAEIPOUR A., KAMSIN A. 2016. A hybrid computational intelligence method for predicting dew point temperature. Environmental Earth Sciences, 75: 415. Google Scholar
ASHRAE Handbook-Fundamentals. 1993. ASHRAE, Atlanta, GA. Google Scholar
BOHREN C., ALBRECHT B. 1998. Atmospheric Thermodynamics. Oxford University Press, p. 402. Google Scholar
BOSEN J.F. 1958. An approximation formula to compute relative humidity from dry bulb and dew point temperatures. Monthly Weather Review, 86(12): 486. Google Scholar
BROOKER D.B., BARKER-ARKEMA F.W., HALL C.W. 1992. Drying and storage of grains and oilseeds. AVIBook, New York. Google Scholar
CUI B., ZHU Y. Section 6: Bias correction and statistical down-scaling for 2-meter dew-point temperature and relative humidity. National Weather Service. Environmental Modeling Center. http://www.emc.ncep.noaa.gov/gmb/yzhu/imp/i201204/NAEFS–Science–Documentation.pdf (access: 5.05.2016). Google Scholar
EZFREMOV G. 2013. Describing of generalized drying kinetics with application of experiment design method. Technical Sciences, (16)4: 309–322. Google Scholar
ERB R.J. 1993. Introduction to backpropagation neural network computation. Pharmaceutical Research, 10(2): 165–170. Google Scholar
GERYŁO R. 2008. Powierzchniowa kondensacja pary wodnej. Świat Szkła, 9. Google Scholar
GOLISZ E., JAROS M., KALICKA M. 2013. Analysis of convectional drying pracess of peach. Technical Sciences, 16(4): 333–343. Google Scholar
HUBBART K.G., MAHMOOD R., CARLSON C. 2003. Estimating daily dew point temperature for the northern Great Plains using maximum and minimum temperature. Agronomy Journal, 95(2): 323–328. Google Scholar
Instytut Inżynierii i Gospodarki Wodnej. Politechnika Krakowska. M. Bodziony. Wilgotność powietrza. http://holmes.iigw.pl/~mbodzion/dydaktyka/hydro/pliki/wilgotnosc.pdf (access: 5.05.2016). Google Scholar
JALAL S., SUNGWON K., OZGUR K. 2014. Estimation of daily dew point temperature using genetic programming and neural networks approaches. Hydrology Research. An International Journal, 45.2: 165–181. Google Scholar
KALETA A., GÓRNICKI K., WINICZENKO R., CHOJNACKA A. 2013. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Conversion and Management, 67: 179–185. Google Scholar
KALETA A., GÓRNICKI K., 2010. Some remarks on evaluation of drying models of red beet particles. Energy Conversion and Management, 51(12): 2967–2978. Google Scholar
KHALAJ G., AZIMZADEGAN T., KHOEINI M., ETAAT M. 2013. Artificial neural networks application to predict the ultimate tensile strength of X70 pipeline steels. wNeural Computing and Applications, 23(7–8): 2301–2308. Google Scholar
KIM S., SINGH V.P., LEE C.J., SEO Y. 2015. Modeling the physical dynamics of daily dew point temperature using soft computing techniques. KSCE Journal of Civil Engineering, 19(6): 1930–1940. Google Scholar
LAWRENCE M.G. 2005. The relationship between relative humidity and the dewpoint temperature in moist air. A simple conversion and applications. American Meteorological Society, 2: 225–233. Google Scholar
LOPES D.C., MELO E.C., MARTINS J.H., GRACIA L.M.N, GUIMARÁES A.C. 2009. Grapsi Draw Digital Psychrometric Chart. In: Computer and Computing Technologies in Agriculture II. Vol. 1. Ed. D. Li, Ch. Zhao. IFIP Advances in Information and Communication Technology, Springer, Boston, p. 519–528. Google Scholar
Massachusetts Institute of Technology. http://web.mit.edu/weather/info/Frequently–Asked–Questions-temp-dewpoint (access: 5.05.2016). Google Scholar
MITTAL G.S. 1996. Computerized Control Systems in the Food Industry. CRC Press. Google Scholar
MITTAL G.S., ZHANG J. 2003. Artificial neural network-based psychrometric predictor. Biosystems Engineering, 85(3): 283–289. Google Scholar
MOHAMMADI K., SHAMSHIRBAND S., PETKOVIĆ D., YEE P.L., MANSOR Z. 2016. Using ANFIS for selection of more relevant parameters to predict dew point temperature. Applied Thermal Engineering, 96: 311–319. Google Scholar
NADIG K., POTTER W., HOOGENBOOM G., MCCLENDON R. 2013. Comparison of individual and combined ANN models for prediction of air and dew point temperature. Applied Intelligence, 39(2): 354–366. Google Scholar
National Weather Service. Environmental Modeling Center. http://www.srh.noaa.gov/images/epz/ wxcalc/rhTdFromWetBulb.pdf (access: 5.05.2016). Google Scholar
National Weather Service. Environmental Modeling Center. http://www.srh.noaa.gov/images/epz/ wxcalc/wetBulbTdFromRh.pdf (access: 5.05.2016) Google Scholar
National Oceanic and Atmospheric Administration. National Weather Service. Wet-bulb Temperature and Dewpoint Temperature from Air Temperature and Relative Humidity. http://www.crh.noaa.gov/Image/epz/wxcalc/wetBulbTdFromRh.pdf (access: 5.05.2016). Google Scholar
NAZGHELICHI T., AGHBASHLO M., KIANMEHR M.H 2011. Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Computer and Electronics in Agriculture, 75: 84–91. Google Scholar
NOURBAKHSHA H., EMAM-DJOMEH Z., OMID M., MIRSAEEDGHAZI H., MOINI S. 2014. Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM. Computers and Electronics in Agriculture, 102: 1–9. Google Scholar
OMID M. BAHARLOOEI A., AHMADI H. 2009. Modeling drying kinetics of pistachio nuts with multi-layer feed-forward neural network. Drying Technology, 27: 1069–1077. Google Scholar
RIANGVILAIKUL B., KUMAR S. 2010a. An experimental study of a novel dew point evaporative cooling system. Energy and Buildings, 42: 637–644. Google Scholar
RIANGVILAIKUL B., KUMAR S. 2010b. Numerical study of a novel dew point evaporative cooling system. Energy and Buildings, 42: 2241–2250. Google Scholar
ROJECKI A. 1959. Tablice psychrometryczne. Wyd. 2 poprawione i uzupełnione. Wydawnictwa Komunikacyjne, Warszawa. Google Scholar
SALWIŃSKI J. 2002. Jak za pomocą higrometru określić termiczność? http://old.szybowce.com/termicznosc.php (access: 5.05.2016). Google Scholar
SARGENT G.P. 1980. Computation of vapour pressure, dew-point and relative humidity from dry- and wet-bulb temperatures. Meteorological Magazine, 109: 238–246. Google Scholar
SHANK D.B., HOOGENBOOM G., MCCLENDON R.W. 2008. Dew point temperature prediction using artificial neural networks. Journal of Applied Meteorology and Climatology, 47(6): 1757–1769. Google Scholar
SHIRI J., KIM S., KISI O. 2014. Estimation of daily dew point temperature using genetic programming and neural networks approaches. Hydrology Research, 45(2): 165–181. Google Scholar
SHROFF S., DABHI V. 2013a. Dew Point modelling using GEP based multi objective optimization. arXiv preprint arXiv:1304.5594. Google Scholar
SHROFF S., DABHI V. 2013b. Multiobjective optimization in Gene Expression Programming for Dew Point. arXiv preprint arXiv:1304.5594. Google Scholar
SIMONS R.E. 2008. Estimating dew point temperature for water cooling applications. Electronics cooling 1. http://www.electronics-cooling.com/2008/05/estimating-dew-point-temperature-forwater-cooling-applications (access: 5.05.2016). Google Scholar
SINGH A.K., SINGH H., SINGH S.P., SAWHNEY R.L. 2002. Numerical calculation of psychrometric properties on a calculator. Building and Environment, 37: 415–419. Google Scholar
SNYDER R.L., DE MELO-ABREU J.P. 2005. Frost protection: fundamentals, practice and economics. Vol. 1. Food and Agricultural Organization of the United Nations, Rome. Google Scholar
SREEKANTH S., RAMASWAMY H.S., SABLANI S. 1998. Prediction of psychrometric parameters using neural networks. Drying Technology, 16(3–5): 825–837. Google Scholar
WEISS A. 1977. Algorithms for the calculation of moist air properties on hands calculator. Transaction of ASAE, 20: 1133-1136. Google Scholar
Wikipedia. Wolna Encyklopedia. Temperatura punktu rosy. http://pl.wikipedia.org/wiki/Temperatura–punktu–rosy (access: 5.05.2016). Google Scholar
WILHELM L.R. 1976. Numerical calculation of psychrometric properties. Transactions of ASAE, 19(2): 318-325. Google Scholar
WINICZENKO R., GÓRNICKI K., KALETA A., JANASZEK-MAŃKOWSKA M. 2016. Optimisation of ANN topology for predicting the rehydrated apple cubes colour change using RMS and GA. Neural Computing and Applications, 1-15. DOI: 10.1007/s00521-016-2801-y. Google Scholar
WOOD L.A. 1970. The use of dew-point temperature in humidity calculations. Journal of Research of the National Bureau of Standards – C. Engineering and Instrumentation, 74C(3,4): 117–122. Google Scholar
ZHAO X., LI J.M., RIFFAT S.B. 2008. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling. Applied Thermal Engineering, 28: 1942–1951. Google Scholar
ZOUNEMAT-KERMANI M. 2012. Hourly predictive Levenberg–Marquardt ANN and multi linear regression models for predicting of dew point temperature. Meteorology and Atmospheric Physics, 117(3–4): 181–192. Google Scholar