The effect of influence of conservative and tangential axial forces on transverse vibrations of tapered vertical columns
Jerzy Jaroszewicz
Leszek Radziszewski
Łukasz Dragun
Abstrakt
The Cauchy function and characteristic series were applied to solve the boundary value problem of free transverse vibrations of vertically mounted, elastically supported tapered cantilever columns. The columns can be subjected to universal axial point loads which considerate – conservative and follower /tangential/ forces, and to distributed loads along the cantilever length. The general form of characteristic equation was obtained taking into account the shape of tapered cantilever for attached and elastically secured. Bernstein-Kieropian double and higher estimators of natural frequency and critical loads were calculated based on the first few coefficients of the characteristic series. Good agreement was obtained between the calculated natural frequency and the exact values available in the literature.
Słowa kluczowe:
transverse vibrations, vertical cantilever, boundary value problemBibliografia
BIDERMAN V.L. 1972. Prikladnaja teorija mechaničeskich kolebanij. Vysšaja Škola, Moskva. Google Scholar
HAŠČUK P., ZORYJ L.M. 1999. Linijni modeli diskretno-neperervnyh mechanicznych system. Lviv, Ukrainski technologii, 372. Google Scholar
JAROSZEWICZ J. 1999. The effect of non-homogenous material properties on transverse vibration of elastic cantilever. JAM, Kiev, 35(6): 103–110. Google Scholar
JAROSZEWICZ J., ZORYJ L. 1985. Free transversal vibrations of a cantilever beam with variable cross section. Eng. Trans., 33(4): 537–547. Google Scholar
JAROSZEWICZ J., ZORYJ L. 1994. Transversal vibrations and stability of beams with variable parameters. Int. Appl. Mech.-Eng. Tr., 30(9): 713–720. Google Scholar
JAROSZEWICZ J., ZORYJ L. 1996. Critical Euler load for a cantilever tapered beam. J. Theor. Appl. Mech., 4(34): 843–851. Google Scholar
JAROSZEWICZ J., ZORYJ L.M. 1997. Metody analizy drgań i stateczności kontynualno-dyskretnych układów mechanicznych. Politechnika Białostocka, Białystok. Google Scholar
JAROSZEWICZ J., ZORYJ L. 2000. Investigation of axial loads on transverse vibrations of vertical cantilevers of variable parameters. JAM, Kiev, 36(9): 1242–1251. Google Scholar
JAROSZEWICZ J., ŻUR K., DRAGUN Ł. 2014. The influence function method in analysis of bending curve and relations of elastic supports of beam with variable parameters. Journal of Theoretical and Applied Mechanics, 52(1): 247–255. Google Scholar
KUKLA S., SKALMIERSKI B. 1993. The effect of Axial Load on Transverse Vibrations of an Euler Bernoulli Beam. J. Theor. and Appl. Mech., 2(31). Google Scholar
SOLECKI R., SZYMKIEWICZ J. 1964. Układy prętowe i powierzchniowe, obliczenia dynamiczne. Arkady, Warszawa. Google Scholar
SZMIDLA J., KLUBA M. 2011. Stateczność i drgania swobodne niepryzmatycznego układu smukłego poddanego obciążeniu eulerowskiemu. Modelowanie Inżynierskie, 41: 385–394. Google Scholar
ZORYJ L.M. 1982. Universal characteristic equations in problems on the vibrations and stability of elastic systems. Tverd. Tela, 6: 155–162. Google Scholar