Time consumption in calculations of the hydraulic and geometrical tortuosity in granular beds

Wojciech Sobieski



Amir Raoof



Alraune Zech




Abstrakt

Tortuosity is one of the most elusive parameters of porous media due to its subjective estimation. Here, we compare two approaches for obtaining the tortuosity in granular porous media to investigate their capabilities and limitations. First, we determine the hydraulic tortuosity based on the calculated components of the velocity field obtained from flow simulations using the Lattice Boltzmann Method (LBM). Second, we directly determine the geometric tortuosity by making use of the Path Tracking Method (PTM) which only requires the geometric properties of the porous medium. In both cases, we apply the same geometrical structure which is a virtually generated 3D granular bed using the discrete element method consisting of 50 particles. Our results show that the direct PTM is much faster and more precise than the indirect approach based on the calculated velocity field. Therefore, PTM may provide a tool for calculating tortuosity for large 3D granular systems where indirect methods are limited due to the required computational power and time. While LBM considers various routes across the porous media implicitly, PTM identifies them explicitly. As a result, PTM requires a statistical post-processing. As an advantage, this can provide further information than just domain scale average values.


Słowa kluczowe:

granular porous media, geometric tortuosity, hydraulic tortuosity, Path Tracking Method, Discrete Element Method, Lattice Boltzmann Method


Afkhami M., Hassanpour A., Fairweather M., Njobuenwu D.O., 2015, Fully coupled LES-DEM of particle interaction and agglomeration in a turbulent channel flow, Computers and Chemical Engineering, 78, 24-38.   Google Scholar

Al-Arkawazi S., Marie C., Benhabib K., Coorevits P., 2017, Modeling the hydrodynamic forces between fluid-granular medium by coupling DEM-CFD, Chemical Engineering Research and Design, 117, 439-447.   Google Scholar

Bear, J., 1972, Dynamics of Fluids in Porous Media. Courier Dover Publications, New York.   Google Scholar

Bhatnagar P. L., Gross E. P., Krook M., 1954, A model for collisional processes in gases I: small amplitude processes in charged and neutral onecomponent system, Physical Review, 94(3), 511-524.   Google Scholar

Carman, P. C., 1937, Fluid Flow through Granular Beds. AIChE, 15, 150.   Google Scholar

Catalano E., 2012, A pore- coupled hydromechanical model for biphasic granular media, Ph.D. Thesis, Grenoble University, France.   Google Scholar

Chen F., 2009, Coupled Flow Discrete Element Method Application in Granular Porous Media using Open Source Codes, Ph.D. Thesis, University of Tennessee, Knoxville, USA.   Google Scholar

Cieszko M., 2009, Description of anisotropic pore space structure of permeable materials based on Minkowski metric space, Arch. Mech., 61(6), 425-444.   Google Scholar

Cieszko M., Kriese W., 2006, Description of tetragonal pore space structure of porous materials, Arch. Mech., 58(4-5), 477-488.   Google Scholar

Cundall P.A., Strack O.D., 1979, A discrete element model for granular assemblies, Géotechnique, 29, 47-65.   Google Scholar

Duda A., Koza Z., Matyka M., 2011, Hydraulic tortuosity in arbitrary porous media flow, Physical Review E, 84, 036319.   Google Scholar

Erath C., 2010, Coupling of the Finite Volume Method and the Boundary Element Method, Ph.D. Thesis, University Ulm, Germany.   Google Scholar

Feng Y. T., Han K., Owen D. R. J., 2007, Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: Computational issues, International Journal for Numerical Methods in Engineering, 72, 1111-1134.   Google Scholar

Free Software Foundation [on-line], 2019, URL: https://www.fsf.org/ (Available at February 10, 2020).   Google Scholar

Galindo-Torres S. A., 2013, A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid-solid interaction with particles of general shapes, Computer Methods in Applied Mechanics and Engineering, 265, 107-119.   Google Scholar

Gharedaghloo B., Price J. S., Rezanezhad F., Quinton W.L., 2018., Evaluating the hydraulic and transport properties of peat soil using porenetwork modeling and X-ray micro computed tomography, Journal of Hydrology, 561, 494-508.   Google Scholar

Komoróczi A., Abe S., Urai J. L., 2013, Meshless numerical modeling of brittle–viscous deformation: first results on boudinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH), Computational Geosciences, 17(2), 373-390.   Google Scholar

Koponen A., Kataja M., Timonen J., 1996, Tortuous flow in porous media, Phys. Rev. E, 54, 406.   Google Scholar

Koponen A., Kataja M., Timonen J., 1997, Permeability and effective porosity of porous media, Phys. Rev. E, 56, 3319.   Google Scholar

Lindner S., 2015, Product Data Sheet, Version V13.   Google Scholar

Mahabadi, O. K. Lisjak, A. He, L. Tatone B. S. A., Kaifosh, P., Grasselli G., 2016, Development of a New Fully-Parallel Finite-Discrete Element Code: Irazu. ARMA 16-516.   Google Scholar

Marek M., 2014, CFD modelling of gas flow through a fixed bed of Raschig rings, Journal of Physics: Conference Series 530, 012016.   Google Scholar

Markauskas D., Kruggel-Emden H., Sivanesapillai R., Steeb H., 2017, Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow, Powder Technology, 305, 78-88.   Google Scholar

Markl M., 2015, Numerical Modeling and Simulation of Selective Electron Beam Melting Using a Coupled Lattice Boltzmann and Discrete Element Method, Ph.D. Thesis, Friedrich-Alexander-University Erlangen-Nuremberg, Germany.   Google Scholar

MayaVi [online], 2020, URL: https://docs.enthought.com/mayavi/mayavi/ (available at February 10, 2020).   Google Scholar

Nabovati A., Sousa A. C. M., 2007, Fluid Flow Simulation in Random Porous Media at Pore Level Using Lattice Boltzmann Method, In: Zhuang F.G., Li J.C. (eds) New Trends in Fluid Mechanics Research, Springer, Berlin, Heidelberg.   Google Scholar

Nordbotten J. M., 2014, Finite volume hydromechanical simulation in porous media, Water Resources Research, 50(5), 4379-4394.   Google Scholar

Palabos Home [online], 2020, URL: http://www.palabos.org/ (available at February 10, 2020).   Google Scholar

ParaView [online], 2020, URL: http://www.paraview.org/ (available at February 10, 2020).   Google Scholar

Qiu L.-C., 2015, A Coupling Model of DEM and LBM for Fluid Flow through Porous Media, Procedia Engineering, 102, 1520-1525.   Google Scholar

Rojek J., 2007, Multiscale analysis using a coupled discrete/finite element model, Interaction and Multiscale Mechanics, 1(1), 1-31.   Google Scholar

Sakai M., 2016, How Should the Discrete Element Method Be Applied in Industrial Systems? KONA Powder and Particle Journal, 33, 169-178.   Google Scholar

Saomoto H., Katagiri J., 2015, Direct comparison of hydraulic tortuosity and electric tortuosity based on finite element analysis, Theoretical and Applied Mechanics Letters, 5(5), 177-180.   Google Scholar

Sobieski W., Dudda W., Lipiński S., 2016a, A new approach for obtaining the geometric properties of a granular porous bed based on DEM simulations, Technical Sciences, 19(2), 2016a, 165-187.   Google Scholar

Sobieski W., Lipiński S., 2016b, PathFinder User's Guide, University of Warmia and Mazury in Olsztyn (Poland), Olsztyn.   Google Scholar

Sobieski W., Lipiński S., Dudda W., Trykozko A., Marek M., Wiącek J., Matyka M., Gołembiewski J., 2016c, Granular porous media, University of Warmia and Mazury in Olsztyn (in Polish).   Google Scholar

Sobieski W., 2009, Calculating tortuosity in a porous bed consisting of spherical particles with known sizes and distribution in space, Research report 1/2009, Winnipeg, Canada.   Google Scholar

Sobieski, W., 2016, The use of Path Tracking Method for determining the tortuosity field in a porous bed, Granular Matter 18:72.   Google Scholar

Sobieski W., Zhang Q., Liu, C., 2012, Predicting Tortuosity for Airflow Through Porous Beds Consisting of Randomly Packed Spherical Particles, Transport Porous Med., 93(3), 431-451.   Google Scholar

Srivastava S., Yazdchi K., Luding S., 2012, Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions, Philosophical Transactions of the Royal Society A, 372(2021), 1-18.   Google Scholar

Stránský J., Jirásek M., 2012, Open source FEM-DEM coupling. 18th International Conference Engineering Mechanics, Svratka, Czech Republic, May 14-17, Paper no 18, 1237-1251.   Google Scholar

Sun W. C., Kuhn M. R., Rudnicki J. W., 2013, A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band, Acta Geotechnica, 8(5), 465-480.   Google Scholar

Trykozko A., Peszynska M., Dohnalik M., 2016, Modeling non-Darcy flows in realistic pore-scale proppant geometries, Computers and Geotechnics, 71, 352-360.   Google Scholar

Villard P., Chevalier B., Le Hello B., Combe G., 2009, Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic, Computers and Geotechnics, 36(5), 709-717.   Google Scholar

Wang P., 2014, Lattice Boltzmann Simulation of Permeability and Tortuosity for Flow through Dense Porous Media. Math. Prob. Eng., 694350.   Google Scholar

Widuliński Ł., Kozicki J., Tejchman J., 2009, Numerical Simulations of Triaxial Test with Sand Using DEM, Archives of Hydro-Engineering and Environmental Mechanics, 56(3-4), 149-171.   Google Scholar

Willert C. E., Gharib M., 1991, Digital particle image velocimetry, Experiments in Fluids, 10(4), 181-193.   Google Scholar

Wu T.-R., Huang C.-J., Chuang M.-H., Wang C.-Y., C.-R. Chu C.-R., 2011, Dynamic coupling of multi-phase fluids with a moving obstacle, Journal of Marine Science and Technology, 19(6), 643-650.   Google Scholar

Xiang J., Latham J. P., Vire A, Anastasaki E, Pain C.C., 2012, Coupled fluidity/y3d technology and simulation tools for numerical breakwater modelling, Coastal Engineering Proceedings, 33, 1-9.   Google Scholar

YADE Documentation [online], 2020. URL: https://yade-dem.org/doc/Yade.pdf (Available at February 10, 2020).   Google Scholar

Zeng Q., Yao J., 2015, Numerical Simulation of Fluid-Solid Coupling in Fractured Porous Media with Discrete Fracture Model and Extended Finite Element Method, Computation, 3, 541-557.   Google Scholar

Zhao J., Shan T., 2013, Coupled CFD–DEM simulation of fluid–particle interaction in geomechanics, Powder Technology, 239, 248-258.   Google Scholar


Opublikowane
27-04-2020

Cited By /
Share

Sobieski, W., Raoof, A., & Zech, A. (2020). Time consumption in calculations of the hydraulic and geometrical tortuosity in granular beds. Technical Sciences, 23(1), 25–51. https://doi.org/10.31648/ts.5449

Wojciech Sobieski 

Amir Raoof 

Alraune Zech 




Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.





-->