Studium warunków optymalizacji układu napędowego pojazdu z silnikiem spalinowym
Michał Janulin
Katedra Budowy, Eksploatacji Pojazdów i Maszyn, Wydział Nauk Technicznych, Uniwersytet Warmińsko-Mazurski w OlsztynieAbstrakt
W pracy przeprowadzono analizę rozwiązań konstrukcyjnych pojazdów, mających na celu zapewnienie zgodności z normami środowiskowymi, nowoczesnymi wymaganiami dotyczącymi zużycia zasobów energetycznych, bezpieczeństwa oraz oczekiwaniami konsumentów. Podczas doboru parametrów układu napędowego pojazdu samochodowego napędzanego silnikiem spalinowym jako kryteria oceny zostały przyjęte zużycie paliwa, właściwości dynamiczne oraz parametry środowiskowe związane z emisją szkodliwych substancji. Dokonano modyfikacji istniejącego pojazdu o DMC (Dopuszczalna Masa Całkowita) nieprzekraczającej 3,5 tony przeznaczonego do przewozu osób, polegającej na zmianie silnika o zapłonie iskrowym na silnik o zapłonie samoczynnym. W związku z przeprowadzonymi modyfikacjami, niezbędne stało się dopasowanie wartości przełożeń w układzie przeniesienia napędu tak, aby jak najlepiej wykorzystać charakterystykę zamontowanego silnika, zapewnić odpowiednią dynamikę pojazdu, jednocześnie ograniczając zużycie paliwa oraz emisję szkodliwych substancji. Optymalizację wybranych parametrów układu napędowego pojazdu przeprowadzono w oparciu o wymogi standardowych cykli, jak również uwzględniono profile prędkości oraz zapisy dotyczące nachylenia drogi pozyskane podczas wykonywanych prób w rzeczywistych warunkach eksploatacji.
Słowa kluczowe:
optimization, powertrain, gear ratio, vehicle energy efficiency, fuel consumptionBibliografia
Barlow, T., Latham, S., McCrae, I., and Boulter, P., "A reference book of driving cycles for use in the measurement of road vehicle emissions", HMSO, Department for Transport, London, 2009, Google Scholar
Bertram C., Herzog H.-G. Optimization Method for Drive Train Topology Design and Control of Electric Vehicles. EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. Barcelona, Spain, November 17-20, 2013, 8 p. Google Scholar
Da Costa A., Alix G. (2011) Enhancing hybrid vehicle performances with limited CO2 overcost thanks to an innovative strategy, 2011 EAEC Congress, Valence, Spain. Google Scholar
Dabadie J.C., Le Berr F., Salzgeber K., Prenninger P. (2011) Evaluation of TEG Potential in Hybrid Electric Vehicle by Simulation, Vehicle Thermal Management Systems (VTMS 10), Gaydon, Warwickshire, UK, 15-19 May 2011 Google Scholar
Dabadie, J., Sciarretta, A., Font, G., and Le Berr, F., "Automatic Generation of Online Optimal Energy Management Strategies for Hybrid Powertrain Simulation," SAE Technical Paper 2017-24-0173, 2017, doi:10.4271/2017-24-0173 Google Scholar
Fraser, N., Blaxill, H., Lumsden, G. and Bassett, M.,”Challenges for increased efficiency through gasoline engine downsizing”, SAE Int. J. Engines, 2(1), 2009, pp.991-1008 Google Scholar
Ghorbanian J, Ahmadi M, Soltani R. Design predictive tool and optimization of journal bearing using neural network model and multi-objective genetic algorithm. Scientia Iranica, Transactions B: Mechanical Engineering 2011; 18: 1095–1105. doi:10.1016/j.scient.2011.08.007 Google Scholar
Giakoumis EG, Zachiotis AT. Investigation of a Diesel-Engine Vehicle Performance and Emissions during the WLTC Driving Cycle - Comparison with the NEDC. Energies 2017; 10: 240; doi:10.3390/en10020240 Google Scholar
Gillespie, T. D. Fundamentals of vehicle dynamics, SAE, Warrendale, PA, USA, 1992 Google Scholar
Grytsyuk O, Vrublevskyi O. Investigations of diesel engine in the road test. Diagnostyka 2018;19(2):89–94. https://doi.org/10.29354/diag/90279 Google Scholar
Heywood, J. B. Internal Combustion Engine Fundamentals, McGraw Hill, New York, 1988 Google Scholar
Husain I., Islam M.S. (1999) Design, Modeling and Simulation of an Electric Vehicle System, SAE Paper 1999-01-1149 Google Scholar
Kropiwnicki, J. Ocena efektywności energetycznej pojazdów samochodowych z silnikami spalinowymi. Monografie, 110. Google Scholar
Le Berr F., Abdelli A., Postariu D.-M. and Benlamine R.Design and Optimization of Future Hybrid and Electric Propulsion Systems An Advanced Tool Integrated in a Complete Workflow to Study Electric Devices Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 67 (2012), No. 4, pp. 547-562 DOI: 10.2516/ogst/2012029, Google Scholar
Mitchke M.; Dynamika samochodu, Wydawnictwa Komunikacji i Łączności, Warszawa 1977 Google Scholar
Oglieve, C., Mohammadpour, M. and Rahnejat, H., 2017. Optimisation of the vehicle transmission and the gear-shifting strategy for the minimum fuel consumption and the minimum nitrogen oxide emissions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231 (7), pp. 883-899. https://doi.org/10.1177/0954407017702985 Google Scholar
Orzełowski S.; Budowa podwozi i nadwozi samochodowych, Warszawa 1969, Gillespie, T. D. Fundamentals of vehicle dynamics, SAE, Warrendale, PA, USA, 1992 Google Scholar
Ross, P.J. 1998. Taguchi Techniques for Quality Engineering; McGraw-Hill: New York Google Scholar
Rubinstein, R. Y., Kroese, D. P. 2008. Simulation and the Monte Carlo Method, Second Edition, J. Wiley & Sons Inc Google Scholar
Schittkowski, K. 1986. NLPQL: A Fortran subroutine for solving constrained nonlinear programming problems. Annals of Operations Research 5(2), 485–500. Google Scholar
Schittkowski, K. 2011. A robust implementation of a sequential quadratic programming algorithm with successive error restoration. Optimization Letters, 5(2), 283-296. http://dx.doi.org/10.1007/s11590-010-0207-9 Google Scholar
Sciaretta A.., Dabadie J., Albrecht A. (2008) Control-Oriented Modeling of Power Split Devices in Combined Hybrid-Electric Vehicles, SAE Paper 2008-01-1313. Google Scholar
Skugor, B., & Deur, J. (2014). Dynamic programming-based optimization of electric vehicle fleet charging. 2014 IEEE International Electric Vehicle Conference (IEVC).doi:10.1109/ievc.2014.7056171 Google Scholar
Sobol IM, Statnikov RB. Choice of optimal parameters in a framework with many criteria. Drofa, Moskwa. 2006 Google Scholar
Verdonck N., Chasse A., Pognant-Gros P., Sciarretta A. (2010) Automated Model Generation for Hybrid Vehicles Optimization and Control, Oil Gas Sci. Technol. – Rev. IFP 65, 1, 115-132 Google Scholar
Vrublevskyi O.; Wojnowski R. Development of a method for finding the optimal solution when upgrading a motorcycle engine. Technical Sciences, 2019, 2.22: 125-149. Google Scholar
Wenchen Shen, Huilong Yu, Yuhui Hu and Junqiang Xi Optimization of Shift Schedule for Hybrid Electric Vehicle with Automated Manual Transmission. Energies 2016, 9, 220; doi:10.3390/en9030220. Google Scholar
http://www.lmsintl.com/imagine-amesim-suite Google Scholar
Katedra Budowy, Eksploatacji Pojazdów i Maszyn, Wydział Nauk Technicznych, Uniwersytet Warmińsko-Mazurski w Olsztynie