Studium warunków optymalizacji układu napędowego pojazdu z silnikiem spalinowym

Michał Janulin

Katedra Budowy, Eksploatacji Pojazdów i Maszyn, Wydział Nauk Technicznych, Uniwersytet Warmińsko-Mazurski w Olsztynie


Abstrakt

W pracy przeprowadzono analizę rozwiązań konstrukcyjnych pojazdów, mających na celu zapewnienie zgodności z normami środowiskowymi, nowoczesnymi wymaganiami dotyczącymi zużycia zasobów energetycznych, bezpieczeństwa oraz oczekiwaniami konsumentów. Podczas doboru parametrów układu napędowego pojazdu samochodowego napędzanego silnikiem spalinowym jako kryteria oceny zostały przyjęte zużycie paliwa, właściwości dynamiczne oraz parametry środowiskowe związane z emisją szkodliwych substancji. Dokonano modyfikacji istniejącego pojazdu o DMC (Dopuszczalna Masa Całkowita) nieprzekraczającej 3,5 tony przeznaczonego do przewozu osób, polegającej na zmianie silnika o zapłonie iskrowym na silnik o zapłonie samoczynnym. W związku z przeprowadzonymi modyfikacjami, niezbędne stało się dopasowanie wartości przełożeń w układzie przeniesienia napędu tak, aby jak najlepiej wykorzystać charakterystykę zamontowanego silnika, zapewnić odpowiednią dynamikę pojazdu, jednocześnie ograniczając zużycie paliwa oraz emisję szkodliwych substancji. Optymalizację wybranych parametrów układu napędowego pojazdu przeprowadzono w oparciu o wymogi standardowych cykli, jak również uwzględniono profile prędkości oraz zapisy dotyczące nachylenia drogi pozyskane podczas wykonywanych prób w rzeczywistych warunkach eksploatacji.


Słowa kluczowe:

optimization, powertrain, gear ratio, vehicle energy efficiency, fuel consumption


Barlow, T., Latham, S., McCrae, I., and Boulter, P., "A reference book of driving cycles for use in the measurement of road vehicle emissions", HMSO, Department for Transport, London, 2009,   Google Scholar

Bertram C., Herzog H.-G. Optimization Method for Drive Train Topology Design and Control of Electric Vehicles. EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. Barcelona, Spain, November 17-20, 2013, 8 p.   Google Scholar

Da Costa A., Alix G. (2011) Enhancing hybrid vehicle performances with limited CO2 overcost thanks to an innovative strategy, 2011 EAEC Congress, Valence, Spain.   Google Scholar

Dabadie J.C., Le Berr F., Salzgeber K., Prenninger P. (2011) Evaluation of TEG Potential in Hybrid Electric Vehicle by Simulation, Vehicle Thermal Management Systems (VTMS 10), Gaydon, Warwickshire, UK, 15-19 May 2011   Google Scholar

Dabadie, J., Sciarretta, A., Font, G., and Le Berr, F., "Automatic Generation of Online Optimal Energy Management Strategies for Hybrid Powertrain Simulation," SAE Technical Paper 2017-24-0173, 2017, doi:10.4271/2017-24-0173   Google Scholar

Fraser, N., Blaxill, H., Lumsden, G. and Bassett, M.,”Challenges for increased efficiency through gasoline engine downsizing”, SAE Int. J. Engines, 2(1), 2009, pp.991-1008   Google Scholar

Ghorbanian J, Ahmadi M, Soltani R. Design predictive tool and optimization of journal bearing using neural network model and multi-objective genetic algorithm. Scientia Iranica, Transactions B: Mechanical Engineering 2011; 18: 1095–1105. doi:10.1016/j.scient.2011.08.007   Google Scholar

Giakoumis EG, Zachiotis AT. Investigation of a Diesel-Engine Vehicle Performance and Emissions during the WLTC Driving Cycle - Comparison with the NEDC. Energies 2017; 10: 240; doi:10.3390/en10020240   Google Scholar

Gillespie, T. D. Fundamentals of vehicle dynamics, SAE, Warrendale, PA, USA, 1992   Google Scholar

Grytsyuk O, Vrublevskyi O. Investigations of diesel engine in the road test. Diagnostyka 2018;19(2):89–94. https://doi.org/10.29354/diag/90279   Google Scholar

Heywood, J. B. Internal Combustion Engine Fundamentals, McGraw Hill, New York, 1988   Google Scholar

Husain I., Islam M.S. (1999) Design, Modeling and Simulation of an Electric Vehicle System, SAE Paper 1999-01-1149   Google Scholar

Kropiwnicki, J. Ocena efektywności energetycznej pojazdów samochodowych z silnikami spalinowymi. Monografie, 110.   Google Scholar

Le Berr F., Abdelli A., Postariu D.-M. and Benlamine R.Design and Optimization of Future Hybrid and Electric Propulsion Systems An Advanced Tool Integrated in a Complete Workflow to Study Electric Devices Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 67 (2012), No. 4, pp. 547-562 DOI: 10.2516/ogst/2012029,   Google Scholar

Mitchke M.; Dynamika samochodu, Wydawnictwa Komunikacji i Łączności, Warszawa 1977   Google Scholar

Oglieve, C., Mohammadpour, M. and Rahnejat, H., 2017. Optimisation of the vehicle transmission and the gear-shifting strategy for the minimum fuel consumption and the minimum nitrogen oxide emissions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231 (7), pp. 883-899. https://doi.org/10.1177/0954407017702985   Google Scholar

Orzełowski S.; Budowa podwozi i nadwozi samochodowych, Warszawa 1969, Gillespie, T. D. Fundamentals of vehicle dynamics, SAE, Warrendale, PA, USA, 1992   Google Scholar

Ross, P.J. 1998. Taguchi Techniques for Quality Engineering; McGraw-Hill: New York   Google Scholar

Rubinstein, R. Y., Kroese, D. P. 2008. Simulation and the Monte Carlo Method, Second Edition, J. Wiley & Sons Inc   Google Scholar

Schittkowski, K. 1986. NLPQL: A Fortran subroutine for solving constrained nonlinear programming problems. Annals of Operations Research 5(2), 485–500.   Google Scholar

Schittkowski, K. 2011. A robust implementation of a sequential quadratic programming algorithm with successive error restoration. Optimization Letters, 5(2), 283-296. http://dx.doi.org/10.1007/s11590-010-0207-9   Google Scholar

Sciaretta A.., Dabadie J., Albrecht A. (2008) Control-Oriented Modeling of Power Split Devices in Combined Hybrid-Electric Vehicles, SAE Paper 2008-01-1313.   Google Scholar

Skugor, B., & Deur, J. (2014). Dynamic programming-based optimization of electric vehicle fleet charging. 2014 IEEE International Electric Vehicle Conference (IEVC).doi:10.1109/ievc.2014.7056171   Google Scholar

Sobol IM, Statnikov RB. Choice of optimal parameters in a framework with many criteria. Drofa, Moskwa. 2006   Google Scholar

Verdonck N., Chasse A., Pognant-Gros P., Sciarretta A. (2010) Automated Model Generation for Hybrid Vehicles Optimization and Control, Oil Gas Sci. Technol. – Rev. IFP 65, 1, 115-132   Google Scholar

Vrublevskyi O.; Wojnowski R. Development of a method for finding the optimal solution when upgrading a motorcycle engine. Technical Sciences, 2019, 2.22: 125-149.   Google Scholar

Wenchen Shen, Huilong Yu, Yuhui Hu and Junqiang Xi Optimization of Shift Schedule for Hybrid Electric Vehicle with Automated Manual Transmission. Energies 2016, 9, 220; doi:10.3390/en9030220.   Google Scholar

http://www.lmsintl.com/imagine-amesim-suite   Google Scholar


Opublikowane
19-01-2021

Cited By /
Share

Janulin, M. (2021). Studium warunków optymalizacji układu napędowego pojazdu z silnikiem spalinowym. Technical Sciences, 23(4), 291–307. https://doi.org/10.31648/ts.6069

Michał Janulin 
Katedra Budowy, Eksploatacji Pojazdów i Maszyn, Wydział Nauk Technicznych, Uniwersytet Warmińsko-Mazurski w Olsztynie



Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.





-->