Investigation of low- and high cycle fatigue in Al 2024-T4 alloy
Sylwester Bogumił Kłysz
University of Warmia and Mazury, Department of Technical Scienceshttp://orcid.org/0000-0002-4521-4972
Abstrakt
W artykule przedstawiono wyniki badań nisko- (LCF) i wysokocyklowego (HCF) zmęczenia w próbkach ze stopu aluminium 2024-T4, który jest stosowany w konstrukcjach lotniczych, głównie na silnie obciążone elementy konstrukcji, m.in. na poszycie i wręgi kadłuba samolotu oraz dźwigary łopat wirników śmigłowców. Stop ten jest stosowany tam gdzie wymagany jest wysoki stosunek wytrzymałości do masy wyrobu i duża odporność na zmęczenie. Ponadto jest słabo spawalny i ma niską odporność na korozję.
Badania przeprowadzono na próbkach klepsydrowych i cylindrycznych, o orientacji równoległej i prostopadłej względem „kierunku wykonania” półfabrykatu lub kierunku walcowania arkusza blachy. Materiał do badań pobrano z linii produkcyjnej elementów konstrukcji samolotu PZL-130 Orlik TC-II. Dokonano opisu analitycznego wyników w postaci równań Mansona-Coffina i Morrowa.
Słowa kluczowe:
zmęczenie niskocyklowe, zmęczenie wysokocyklowe, stop aluminium 2024, równanie Mansona-Coffina, równanie Morrowa, krzywe S-N, zmęczenie niskocyklowe, zmęczenie wysokocyklowe, stop aluminium 2024, równanie Mansona-Coffina, równanie Morrowa, krzywe S-NBibliografia
ASM Aerospace Specification Metals Inc. http://asm.matweb.com. Google Scholar
DOT/FAA/AR-MMPDS-01. Metallic Materials Properties. 2003. Development and Standardization (MMPDS), U.S. Department of Transportation Federal Aviation Administration. Google Scholar
Feng L, Qian X. 2018. Low cycle fatigue test and enhanced lifetime estimation of high strength steel S550 under different strain ratios. Marine Structures, 61: 343–360. Google Scholar
Goss C. 1982. Doświadczalna i teoretyczna analiza własności stali o podwyższonej wytrzymałości w zakresie małej liczby cykli obciążenia. Biuletyn WAT, 11. Google Scholar
Heinz A., Haszler A., Keidel C., Moldenhauer S., Benedictus R., Miller W. 2000. Recent development in aluminium alloys for aerospace applications. Material Sciences and Engineering A, 280: 102–107. Google Scholar
Ignatovich S.R., Menou A., Karuskevich M.V., Maruschak P.O. 2013. Fatigue damage and sensor development for aircraft structural health monitoring. Theoretical and Applied Fracture Mechanics, 65: 23-27. Google Scholar
Kłysz S. 2000. Wpływ przeciążeń i sekwencji obciążeń na własności niskocyklowe stali 18G2A i St3SY. Zagadnienia Eksploatacji Maszyn, 4(124): 139-154. Google Scholar
Kłysz S., Lisiecki J., Bąkowski T. 2010. Modyfikacja równania do opisu krzywych Wöhlera. Prace Naukowe ITWL, 27: 93-97. Google Scholar
Li Y., Retraint D., Xue H., Gao T., Sun Z. 2019. Fatigue properties and cracking mechanisms of a 7075 aluminum alloy under axial and torsional loadings. Procedia Structural Integrity, 19: 637–644. Google Scholar
MIL-HDBK-5J. Department of Defense Handbook-Metallic Materials and Elements for Aerospace Vehicle Structures. 2003. Google Scholar
Nogueira F., Cunha J., Mateus A., Malça C., Costa J.D., Branco R. 2020. Cyclic plastic behaviour of 7075 aluminium alloy. 1st Virtual Conference on Structural Integrity – VCSI.1 Procedia Structural Integrity, 25: 438–444. Google Scholar
Petrasek M., Ignatovich S., Karuskevich M., Maslak T. 2013. Surface of metal as an indicator of fatigue damage. Advances in Military Technology, 8(2): 83–91. Google Scholar
PN-EN 485-2: Aluminium i stopy aluminium – Blachy, taśmy i płyty. Część 2: Własności mechaniczne. 2009. Google Scholar
PN-EN 573-3: Aluminium i stopy aluminium – Skład chemiczny i rodzaje wyrobów przerobionych plastycznie. Część 3: Skład chemiczny i rodzaje wyrobów. 2009. Google Scholar
Polak J. 1991. Cyclic plasticity and low cycle fatigue life of metals. Materials Science Monographs, 63. Google Scholar
Problemy badań i eksploatacji techniki lotniczej. T.2. Eds. J. Lewitowicz, J. Borgoń, W. Ząbkowicz. Wyd. ITWL, Warszawa. Google Scholar
Sieniawski J. 2002. Rozwój metod projektowania i oceny mikrostruktury i właściwości materiałów konstrukcyjnych dla techniki lotniczej. In: Postępy nauki o materiałach i inżynierii materiałowej. Ed. M. Hetmańczyk. Wydawnictwa Politechniki Śląskiej, Katowice. Google Scholar
University of Warmia and Mazury, Department of Technical Sciences
http://orcid.org/0000-0002-4521-4972