Analysis of the influence of UV light exposure time on hardness and density properties of SLA models
Łukasz Dzadz
University of Warmia and Mazury in Olsztynhttp://orcid.org/0000-0002-5338-5931
Bartosz Pszczółkowski
University of Warmia and Mazury in Olsztynhttps://orcid.org/0000-0002-7985-9488
Abstrakt
The article analysis the effect of exposure to ultraviolet light on the hardening process of the model made in the SLA technology. Research samples were created with the SLA additive technique using a 10s exposure time. In this experiment, the change in item hardness and density over a 96-hour period was analysed. Light exposure time for details of an item made in SLA technology results in an increase in hardness. At the same time are observed, changes in density and stabilization of both parameters with increasing exposure time to UV light.
Słowa kluczowe:
SLA, light-curing resin, hardness, density, UVInstytucje finansujące
Bibliografia
Anseth, K. S., & Bowman, C. N. (1994). Kinetic Gelation model predictions of crosslinked polymer network microstructure. Chemical Engineering Science, 49(14), 2207–2217. https://doi.org/10.1016/0009-2509(94)E0055-U Google Scholar
Bartolo, P. J., & Gibson, I. (2011). Stereolithography: materials, processes and applications (P. Jorge Bártolo (ed.)). Springer Science & Business Media. https://doi.org/10.1007/978-0-387-92904-0 Google Scholar
Ben Redwood, Filemon Scöffer, & Brian Garret. (2017). The 3D Printing Handbook: Technologies, design and applications (B. Redwood, F. Schöffer, & B. Garret (eds.)). Google Scholar
Bociong, K., Krasowski, M., Szczesio, A., Anyszka, R., & Kalicka, K. (2018). Modyfikacja światłoutwardzalnego kompozytu stomatologicznego wybranymi poliedrycznymi oligomerycznymi silseskwioksanami. Polimery, 7–8, 515–523. Google Scholar
Boots, H. M. J., & Pandey, R. B. (1984). Qualitative percolation study of free-radical cross-linking polymerization. Polymer Bulletin, 11(5), 415–420. https://doi.org/10.1007/BF00265480 Google Scholar
Chantarapanich, N., Puttawibul, P., Sitthiseripratip, K., Sucharitpwatskul, S., & Chantaweroad, S. (2013). Study of the mechanical properties of photo-cured epoxy resin fabricated by stereolithography process. Songklanakarin Journal of Science and Technology, 35(1), 91–98. Google Scholar
Cosmi, F., & Dal Maso, A. (2020). A mechanical characterization of SLA 3D-printed specimens for low-budget applications. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.04.602 Google Scholar
Cramer, N. B., & Bowman, C. N. (2001). Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared. Journal of Polymer Science, Part A: Polymer Chemistry, 39(19), 3311–3319. https://doi.org/10.1002/pola.1314 Google Scholar
Czech, Z., & Minciel, E. (2015). Światłoutwardzalne Kompozyty Zawierające Akrylowane Żywice Wielofunkcyjne : Skrócony Przegląd Literaturowy. Aparatura Badawcza i Dydaktyczna, T. 20, 270–275. Google Scholar
Davidson, C. L., & de Gee, A. J. (1984). Relaxation of Polymerization Contraction Stresses by Flow in Dental Composites. Journal of Dental Research, 63(2), 146–148. https://doi.org/10.1177/00220345840630021001 Google Scholar
Davidson, C. L., & Feilzer, A. J. (1997). Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. In Journal of Dentistry (Vol. 25, Issue 6, pp. 435–440). Elsevier BV. https://doi.org/10.1016/S0300-5712(96)00063-2 Google Scholar
Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. In Additive Manufacturing (Vol. 20, pp. 44–67). Elsevier B.V. https://doi.org/10.1016/j.addma.2017.12.002 Google Scholar
Dulieu-Barton, J. M., & Fulton, M. C. (2000). Mechanical properties of a typical stereolithography resin. Strain, 36(2), 81–87. https://doi.org/10.1111/j.1475-1305.2000.tb01177.x Google Scholar
Fan, P. L., Wozniak, W. T., Reyes, W. D., & Stanford, J. W. (1987). Irradiance of visible light-curing units and voltage variation effects. Journal of the American Dental Association (1939), 115(3), 442–445. https://doi.org/10.14219/jada.archive.1987.0252 Google Scholar
Ferracane, J. L., Mitchem, J. C., Condon, J. R., & Todd, R. (1997). Wear and marginal breakdown of composites with various degrees of cure. Journal of Dental Research, 76(8), 1508–1516. https://doi.org/10.1177/00220345970760081401 Google Scholar
Formlabs. (2018). White Paper - Validating Isotropy in SLA 3D Printing. Google Scholar
Formlabs Inc. (2017). The Ultimate Guide to Stereolithography (SLA) 3D Printing. March, 1–23. https://formlabs.com/blog/ultimate-guide-to-stereolithography-sla-3d-printing/ Google Scholar
Fuh, J. Y. H., Chooo, Y. S., Lu, L., Nee, A. Y. C., Wong, Y. S., Wang, W. L., Miyazawa, T., & Ho, S. H. (1997). Post-cure shrinkage of photo-sensitive material used in laser lithography process. Journal of Materials Processing Technology, 63(1–3), 887–891. https://doi.org/10.1016/S0924-0136(96)02744-6 Google Scholar
Hague, R., Mansour, S., Saleh, N., & Harris, R. (2004). Materials analysis of stereolithography resins for use in Rapid Manufacturing. Journal of Materials Science, 39(7), 2457–2464. https://doi.org/10.1023/B:JMSC.0000020010.73768.4a Google Scholar
Huang, Q., Zhang, J., Sabbaghi, A., & Dasgupta, T. (2015). Optimal offline compensation of shape shrinkage for three-dimensional printing processes. IIE Transactions (Institute of Industrial Engineers), 47(5), 431–441. https://doi.org/10.1080/0740817X.2014.955599 Google Scholar
Hull, C. W. (1998). Method for production of three-dimensional objects by stereolithography (Patent No. 5,762,856). In Patent (5,762,856). https://patents.google.com/patent/US5444220A/en Google Scholar
Ian Gibson, David W. Rosen, & Stucker, B. (2010). Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing. In CIRP Encyclopedia of Production Engineering. Springer. https://doi.org/10.1007/978-3-662-53120-4_16866 Google Scholar
Jacobs, P. F. (1992). Rapid prototyping & manufacturing— Fundamentals of stereolithography. Journal of Manufacturing Systems, 12(5). https://doi.org/10.1016/0278-6125(93)90311-g Google Scholar
Le Xuan, H., & Decker, C. (1993). Photocrosslinking of acrylated natural rubber. Journal of Polymer Science Part A: Polymer Chemistry, 31(3), 769–780. https://doi.org/10.1002/pola.1993.080310323 Google Scholar
Liravi, F., Das, S., & Zhou, C. (2015). Separation force analysis and prediction based on cohesive element model for constrained-surface Stereolithography processes. CAD Computer Aided Design, 69, 134–142. https://doi.org/10.1016/j.cad.2015.05.002 Google Scholar
Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050 Google Scholar
Pan, Y., He, H., Xu, J., & Feinerman, A. (2017). Study of separation force in constrained surface projection stereolithography. Rapid Prototyping Journal, 23(2), 353–361. https://doi.org/10.1108/RPJ-12-2015-0188 Google Scholar
PEARSON, G. J., & LONGMAN, C. M. (1989). Water sorption and solubility of resin‐based materials following inadequate polymerization by a visible‐light curing system. Journal of Oral Rehabilitation, 16(1), 57–61. https://doi.org/10.1111/j.1365-2842.1989.tb01317.x Google Scholar
Podgórski, M., Becka, E., Claudino, M., Flores, A., Shah, P. K., Stansbury, J. W., & Bowman, C. N. (2015). Ester-free thiol-ene dental restoratives - Part B: Composite development. Dental Materials, 31(11), 1263–1270. https://doi.org/10.1016/j.dental.2015.08.147 Google Scholar
Schmidleithner, C., & Kalaskar, D. M. (2018). Stereolithography. In 3D Printing. InTech. https://doi.org/10.5772/intechopen.78147 Google Scholar
SHORTALL, A. C., WILSON, H. J., & HARRINGTON, E. (1995). Depth of cure of radiation ‐ activated composite restoratives‐ Influence of shade and opacity. Journal of Oral Rehabilitation, 22(5), 337–342. https://doi.org/10.1111/j.1365-2842.1995.tb00782.x Google Scholar
Soh, M. S., & Yap, A. U. J. (2004). Influence of curing modes on crosslink density in polymer structures. Journal of Dentistry, 32(4), 321–326. https://doi.org/10.1016/j.jdent.2004.01.012 Google Scholar
Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P. (2008). Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyping Journal, 14(2), 72–80. https://doi.org/10.1108/13552540810862028 Google Scholar
Vargas, M. A., Cobb, D. S., & Schmit, J. L. (1998). Polymerization of composite resins: Argon laser vs conventional light. Operative Dentistry, 23(2), 87–93. https://europepmc.org/article/med/9573794 Google Scholar
Venhoven, B. A. M., de Gee, A. J., & Davidson, C. L. (1993). Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins. Biomaterials, 14(11), 871–875. https://doi.org/10.1016/0142-9612(93)90010-Y Google Scholar
Wang, J., Das, S., Rai, R., & Zhou, C. (2018). Data-driven simulation for fast prediction of pull-up process in bottom-up stereo-lithography. CAD Computer Aided Design, 99, 29–42. https://doi.org/10.1016/j.cad.2018.02.002 Google Scholar
Zguris, Z. (2016). How Mechanical Properties of Stereolithography 3D Prints are Affected by UV Curing. Google Scholar
University of Warmia and Mazury in Olsztyn
https://orcid.org/0000-0002-7985-9488