Numerical Simulation of Flow Through Microchannels with Random Roughness

Małgorzata Kmiotek

a:1:{s:5:"en_US";s:32:"Rzeszow University of Technology";}

Adrian Kordos

Rzeszow University of Technology

Tomasz Iwan




Abstrakt

The aim of the study is to determine the effect of a randomly generated rough surface on the laminar flow of a fluid in a microchannel. Two-dimensional axially symmetric microchannels with a circular cross-section in the range of Reynolds number Re = 100-1700 were considered. Flow numerical simulations were performed using the Ansys / Fluent software.


Słowa kluczowe:

roughness, microchannels, microflows, mechanical engineering


Ansari, M. Q., & Zhou, G. (2020). In fl uence of structured surface roughness peaks on fl ow and heat transfer performances of micro- and mini-channels. International Communications in Heat and Mass Transfer, 110(November 2019), 104428. https://doi.org/10.1016/j.icheatmasstransfer.2019.104428
Crossref   Google Scholar

Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., Song, J.-H., Jang, K.-H., & Ahn, S.-H. (2014). Hybrid manufacturing in micro/nano scale: A Review. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 75–92. https://doi.org/10.1007/s40684-014-0012-5
Crossref   Google Scholar

Croce, O. I. R. G. (2016). Numerical simulation of gas flow in rough microchannels : hybrid kinetic – continuum approach versus Navier – Stokes. Microfluidics and Nanofluidics, 20(5), 1–15. https://doi.org/10.1007/s10404-016-1746-x
Crossref   Google Scholar

Dai, B., Li, M., & Ma, Y. (2014). Effect of surface roughness on liquid friction and transition characteristics in micro- and mini-channels. Applied Thermal Engineering, 67(1–2), 283–293. https://doi.org/10.1016/j.applthermaleng.2014.03.028
Crossref   Google Scholar

Jia, J., & Song, Q. (2019). Effect of wall roughness on performance of microchannel applied in microfluidic device. Microsystem Technologies, 25(6), 2385–2397. https://doi.org/10.1007/s00542-018-4124-7
Crossref   Google Scholar

Kandlikar, S. G. (2005). Roughness effects at microscale - Reassessing Nikuradse’s experiments on liquid flow in rough tubes. Bulletin of the Polish Academy of Sciences: Technical Sciences, 53(4), 343–349.   Google Scholar

Kandlikar, S. G. (2006). Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier. https://doi.org/10.1016/B978-0-08-044527-4.X5000-2
Crossref   Google Scholar

Kmiotek, M., & Kucaba-Piȩtal, A. (2018). Influence of slim obstacle geometry on the flow and heat transfer in microchannels. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(2), 111–118. https://doi.org/10.24425/119064   Google Scholar

Kordos, A., & Kucaba-Pietal, A. (2018). Nanovortex evolution in entrance part of the 2D open type long nanocavity. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(2), 119–125. https://doi.org/10.24425/119065   Google Scholar

Lalegani, F., Saffarian, M. R., Moradi, A., & Tavousi, E. (2018). Effects of different roughness elements on friction and pressure drop of laminar flow in microchannels. International Journal of Numerical Methods for Heat & Fluid Flow, 28(7), 1664–1683. https://doi.org/10.1108/HFF-04-2017-0140
Crossref   Google Scholar

Lu, H., Xu, M., Gong, L., Duan, X., & Chai, J. C. (2020). Effects of surface roughness in microchannel with passive heat transfer enhancement structures. International Journal of Heat and Mass Transfer, 148, 119070. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119070
Crossref   Google Scholar

Marzec, K. (2021). Influence of Jet Position on Local Heat Transfer Distribution under an Array of Impinging Nozzles with Non-Planar Contour of the Cooled Surface. Heat Transfer Engineering, 42(17), 1506–1521. https://doi.org/10.1080/01457632.2020.1800280
Crossref   Google Scholar

Mirmanto, M., & Karayiannis, T. (2012). Pressure drop and heat transfer characteristics for single-phase developing flow of water in rectangular microchannels. November. https://doi.org/10.1088/1742-6596/395/1/012085
Crossref   Google Scholar

Mohiuddin Mala, G., & Li, D. (1999). Flow characteristics of water in microtubes. International Journal of Heat and Fluid Flow, 20(2), 142–148. https://doi.org/10.1016/S0142-727X(98)10043-7
Crossref   Google Scholar

Pelević, N., & van der Meer, T. H. (2016). Heat transfer and pressure drop in microchannels with random roughness. International Journal of Thermal Sciences, 99, 125–135. https://doi.org/10.1016/j.ijthermalsci.2015.08.012
Crossref   Google Scholar

Whitehouse, D. (2004). Surfaces and their Measurement. Butterworth-Heinemann.   Google Scholar

Zaremba, D., Blonski, S., Jachimek, M., Marijnissen, M. J., Jakiela, S., & Korczyk, P. M. (2018). Investigations of modular microfluidic geometries for passive manipulations on droplets. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(2), 139–149. https://doi.org/10.24425/119068   Google Scholar

Zhang, C., Chen, Y., & Shi, M. (2010). Effects of roughness elements on laminar flow and heat transfer in microchannels. Chemical Engineering and Processing: Process Intensification, 49(11), 1188–1192. https://doi.org/10.1016/j.cep.2010.08.022
Crossref   Google Scholar


Opublikowane
07-12-2021

Cited By /
Share

Kmiotek, M., Kordos, A., & Iwan, T. (2021). Numerical Simulation of Flow Through Microchannels with Random Roughness. Technical Sciences, 24(1), 283–299. https://doi.org/10.31648/ts.7239

Małgorzata Kmiotek 
a:1:{s:5:"en_US";s:32:"Rzeszow University of Technology";}
Adrian Kordos 
Rzeszow University of Technology
Tomasz Iwan 




Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.





-->