IMPLEMENTACJA CHATBOTA ZORIENTOWANEGO NA CEL W DOMENIE ZATRUDNIANIA
Paweł Drozda
UWMTomasz Żmijewski
Maciej Osowski
Aleksandra Krasnodębska
Arkadiusz Talun
Abstrakt
Niniejszy artykuł koncentruje się na implementacji zorientowanego na cel chatbota w celu przygotowania wirtualnych CV kandydatów na stanowisko pracy. W szczególności badanie zostało poświęcone testowaniu możliwości wykorzystania Deep Q Networks (DQN) do przygotowania efektywnego przepływu konwersacji chatbota z końcowym użytkownikiem systemu. Wyniki badania potwierdziły, że wykorzystanie modelu DQN w procesie szkolenia systemu konwersacyjnego pozwoliło na zwiększenie poziomu sukcesu, mierzonego jako akceptacja CV przez rekrutera i finalizacja rozmowy z botem. Wskaźnik sukcesu wzrósł z 10% do 64% w środowisku eksperymentalnym i z 15% do 45% w środowisku produkcyjnym. Co więcej, model DQN pozwolił na skrócenie rozmowy średnio o 4 pytania, z 11 do 7.
Słowa kluczowe:
chatbot, głęboka sieć Q (DQN), bot zorientowany na cel, Przetwarzanie języka naturalnegoInstytucje finansujące
Bibliografia
ARRUDA D., MARINHO M., SOUZA E., WANDERLEY F. 2019. A Chatbot for Goal-Oriented Requirements Modeling. Computational Science and Its Applications – ICCSA 2019. Lecture Notes in Computer Science, 11622. https://doi.org/10.1007/978-3-030-24305-0_38
Crossref
Google Scholar
BHARTI U., BAJAJ D., BATRA H., LALIT S., LALIT S., GANGWANI A. 2020. Medbot: Conversational Artificial Intelligence Powered Chatbot for Delivering Tele-Health after COVID-19. 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, p. 870-875. https://doi.org/10.1109/ICCES48766.2020.9137944
Crossref
Google Scholar
BRONWYN J., RHIANNE J. 2019. Public Service Chatbots: Automating Conversation with BBC News. Digital Journalism, 7 (8): 1032-1053. https://doi.org/10.1080/21670811.2019.1609371
Crossref
Google Scholar
DROZDA P., TALUN A., BUKOWSKI L. 2019. Emplobot – Design of the System. In Proceedings of the 28th International Workshop on Concurrency, Specification and Programming, Olsztyn. Google Scholar
GERVASI V., ZOWGHI D. 2005. Reasoning about inconsistencies in natural language requirements. ACM Transactions on Software Engineering and Methodology (TOSEM), 14(3): 277-330. https://doi.org/10.1145/1072997.1072999
Crossref
Google Scholar
HAMDAQA M., METZ L.A.P., QASSE I. 2020. IContractML: A domain-specific language for modeling and deploying smart contracts onto multiple blockchain platforms. In Proceedings of the 12th System Analysis and Modelling Conference, p. 34-43. https://doi.org/10.48550/arXiv.2103.09314
Crossref
Google Scholar
HOLDEN THORP H. 2023 ChatGPT is fun, but not an author. Science 379, 313-313. https://doi.org/10.1126/science.adg7879
Crossref
Google Scholar
KUMAR H.V., NAGARAJ J., IRFAN M., MAHESHWARI N., BALUSANI P., CHATTERJEE P., SRINIVASA G. 2018. PESUBot: An Empathetic Goal Oriented Chatbot. International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, p. 1083-1089. https://doi.org/10.1109/ICACCI.2018.8554916
Crossref
Google Scholar
LE N., SIDDIQUE A.B., JAMOUR F., OYMAK S., HRISTIDIS V. 2021. Predictable and adaptive goal-oriented dialog policy generation. IEEE 15th International Conference on Semantic Computing (ICSC), Laguna Hills, CA, p. 40-47. https://doi.org/10.1109/ICSC50631.2021.00012
Crossref
Google Scholar
LI X., CHEN Y.N., LI L., GAO J., CELIKYILMAZ A. 2017. End-to-end task-completion neural dialogue systems. arXiv preprintarXiv: 1703.01008. https://doi.org/10.48550/arXiv.1703.01008 Google Scholar
LIU J., PAN F., LUO L. 2020. Gochat: Goal-oriented chatbots with hierarchical reinforcement learning. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, p. 1793-1796. https://doi.org/10.1145/3397271.3401250
Crossref
Google Scholar
LONE M.B., NAZIR N., KAUR N., PRADEEP D., ASHRAF A.U., ASRAR UL HAQ P., DAR N.B., SARWAR A., RAKHRA M., DAHIYA O. 2022. Self-Learning Chatbots using Reinforcement Learning. 3rd International Conference on Intelligent Engineering and Management (ICIEM), London, p. 802-808. https://doi.org/10.1109/ICIEM54221.2022.9853156
Crossref
Google Scholar
MURALI S.R., RANGREJI S., VINAY S., SRINIVASA G. 2020. Automated NER, sentiment analysis and toxic comment classification for a goal-oriented chatbot. In 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS) Fez, Morocco, p. 1-7. https://doi.org/10.1109/ICDS50568.2020.9268680
Crossref
Google Scholar
PRASETYO P.K., ACHANANUPARP P., LIM E.P. 2020. Foodbot: A Goal-Oriented Just-in-Time Healthy Eating Interventions Chatbot. In Proceedings of the 14th EAI International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth ‘20). Association for Computing Machinery, New York, p. 436–439. https://doi.org/10.1145/3421937.3421960
Crossref
Google Scholar
QASSE I., MISHRA S., HAMDAQA M. 2021. iContractBot: A chatbot for smart contracts’ specification and code generation. In 2021 IEEE/ACM Third International Workshop on Bots in Software Engineering (BotSE), p. 35-38.
Crossref
Google Scholar
SALVI S., GEETHA V., SOWMYA KAMATH S. 2019. Jamura: A Conversational Smart Home Assistant Built on Telegram and Google Dialogflow. TENCON 2019 IEEE Region 10 Conference (TENCON), Kochi, India, p. 1564-1571. https://doi.org/10.1109/TENCON.2019.8929316
Crossref
Google Scholar
SCHAUB L.P., VAUDAPIVIZ C. 2019. Goal-oriented dialog systems and Memory: an overview. 9th Language & Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, Poznań. Google Scholar
SERBAN I., SORDONI A., LOWE R., CHARLIN L., PINEAU J., COURVILLE A., BENGIO Y. 2017. A hierarchical latent variable encoder-decoder model for generating dialogues. In Proceedings of the AAAI conference on artificial intelligence, p. 3295–3301. https://doi.org/10.48550/arXiv.1605.06069
Crossref
Google Scholar
SOLANKI R.K., RAJAWAT A.S., GADEKAR A.R., PATIL M.E. 2023. Building a Conversational Chatbot Using Machine Learning: Towards a More Intelligent Healthcare Application Handbook of Research on Instructional Technologies in Health Education and Allied Disciplines, p. 285-309. https://doi.org/10.4018/978-1-6684-7164-7.ch013
Crossref
Google Scholar
SUHEL S.F., SHUKLA V.K., VYAS S., MISHRA V. 2020. Conversation to Automation in Banking Through Chatbot Using Google Scholar
Artificial Machine Intelligence Language. 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, p. 611-618. https://doi.org/10.1109/ICRITO48877.2020.9197825
Crossref
Google Scholar
UWM