Alday, S. S., & Hanea, A. M. (2022). Bayesian networks as a novel tool to enhance interpretability and predictive power of ecological models. Ecological Informatics, 67, 101539. https://doi.org/10.1016/j.ecoinf.2021.101539
Crossref
Google Scholar
Ancy, S. G., & Praveenchandar, J. (2024). An effective machine learning algorithm for forecasting the market value of a house. Proceedings of the 2024 IEEE International Conference on Artificial Intelligence and Computer Systems (ICAAICS). https://doi.org/10.1109/ icaaic60222.2024.10575745
Crossref
Google Scholar
Basili, M., & Pratelli, L. (2024). Uncertainty, imprecise probabilities, and interval capacity measures on a product space. arXiv. https://doi.org/10.48550/ arxiv.2404.15484
Google Scholar
Bovy, E. M., Suilen, M., Junges, S., & Jansen, N. (2024). Imprecise probabilities meet partial observability: Game semantics for robust POMDPs. International Joint Conference on Artificial Intelligence. https://doi. org/10.24963/ijcai.2024/740
Crossref
Google Scholar
Çatak, F. Ö., & Kuzlu, M. (2024). Uncertainty quantification in large language models through convex hull analysis. arXiv. https://doi.org/10.48550/ arxiv.2406.19712
Google Scholar
Chan, K. K. W., Rodionov, D., & Konnikov, E. A. (2024). Dynamic analysis of the residential real estate market. Modern Economy Success, 4(7), 7–15. https://doi. org/10.58224/2500-3747-2024-4-7-15
Crossref
Google Scholar
Chen, Y., Xu, J., Wang, S., & Xu, S. (2024). Economic environment uncertainty and financialization of real estate firms. International Review of Economics & Finance, 93B, 1104–1114. https://doi.org/10.1016/j. iref.2024.05.011
Crossref
Google Scholar
Cortes-Ciriano, I., & Bender, A. (2018). Deep confidence: A computationally efficient framework for calculating reliable errors for deep neural networks. arXiv: Learning. https://doi.org/10.1021/ACS.JCIM.8B00542
Crossref
Google Scholar
Dai, L., & Sheng, X. (2021). The impact of uncertainty on state-level housing markets of the United States: The role of social cohesion. Sustainability, 13(6), 3065. https://doi.org/10.3390/SU13063065
Crossref
Google Scholar
DelSole, T. (2000). A fundamental limitation of Markov models. Journal of the Atmospheric Sciences, 57(13), 2158–2168. https://doi.org/10.1175/1520- 0469(2000)057<2158>2.0.CO;2
Crossref
Google Scholar
Galante, M., Giove, S., & Rosato, P. (2024). Neural networks and linear models in real estate appraisal: The impact of sets selection procedures. Valori e Valutazioni [Values and Evaluations], 35, 45–68. https://doi.org/10.48264/vvsiev-20243505
Crossref
Google Scholar
Gofman, M. O., Pekna, H., & Solonets, V. (2024). Parameters of the real estate market as a business environment. Včeni zapiski unìversitetu “KROK” [Academic records of the university “KROK”], 74, 31–41. https://doi.org/10.31732/2663-2209-2024-74-31-41
Crossref
Google Scholar
Golomoziy, V., Mishura, Y., & Kladívko, K. (2024). A discrete-time model that weakly converges to a continuous-time geometric Brownian motion with Markov switching drift rate. Frontiers in Applied Mathematics and Statistics, 10, 1450581. https://doi. org/10.3389/fams.2024.1450581
Crossref
Google Scholar
Hanea, A. M., Christophersen, A., & Alday, S. S. (2022). Bayesian networks for risk analysis and decision support. Risk Analysis, 42(6), 1240–1261. https://doi. org/10.1111/risa.13938
Crossref
Google Scholar
Hong, F., Wei, P., Song, J., Faes, M., Valdebenito, M. A., & Beer, M. (2023). Combining data and physical models for probabilistic analysis: A Bayesian augmented space learning perspective. Probabilistic Engineering Mechanics, 73, 103474. https://doi. org/10.1016/j.probengmech.2023.103474
Crossref
Google Scholar
Jiang, C., Li, J., Wang, W., & Ku, W. S. (2021). Modeling real estate dynamics using temporal encoding. Proceedings of the 29th International Conference on Advances in Geographic Information Systems. https:// doi.org/10.1145/3474717.3484254
Crossref
Google Scholar
Juliani, F., & Maciel, C. D. (2024). Bayesian networks supporting management practices: A multifaceted perspective based on the literature. Journal of Indus¬trial Engineering and Management Innovation, 4(1), 100231. https://doi.org/10.1016/j.jjimei.2024.100231
Crossref
Google Scholar
Kapon, S., Del Carpio, L., & Chassang, S. (2024). Using divide-and-conquer to improve tax collection. Quarterly Journal of Economics, qjae018. https://doi. org/10.1093/qje/qjae018
Crossref
Google Scholar
Kim, J.-S. (2024). A study on the forecasting of real estate market using algorithms. Daehan Bu’dongsan Haghoeji [Korean Real Estate Association], 42(2), 159–168. https://doi.org/10.37407/kres.2024.42.2.159
Crossref
Google Scholar
Lafi, M., & Chammem, H. (2023). The uncertainty of eco¬nomic policies in the United States and its impact on the stock markets of some African countries: An empirical study with VAR modeling. Technium Social Sciences Journal, 56(1). https://doi.org/10.47577/tssj. v56i1.10725
Crossref
Google Scholar
Lin, Y., Rong, H., Yang, W., Lin, J., & Zheng, C. (2024). A novel integrated urban flood risk assessment approach based on one-two dimensional coupled hydrodynamic model and improved projection pursuit method. Journal of Environmental Management, 312, 121910. https://doi.org/10.1016/j.jenvman.2024.121910
Crossref
Google Scholar
Marques, S. H. (2023). Simulation and optimisation techniques for construction of a probability box structure. 15th Chaotic Modeling and Simulation International Conference, 177–187. https://doi. org/10.1007/978-3-031-27082-6_15
Crossref
Google Scholar
Mustafa, N., Hassan, G. F., Elrefaie, M. A. M., & Afifi, S. (2024). Different factors affecting the real estate market in the Egyptian context. International Journal of Housing Markets and Analysis. https://doi. org/10.1108/ijhma-03-2024-0044
Crossref
Google Scholar
Naumova, O., Naumova, M., & Karpenko, S. (2024). Pricing real estate market: The uncertainty aspect. Journal of Real Estate Research, 73, 75–82. https://doi. org/10.31732/2663-2209-2024-73-75-82
Crossref
Google Scholar
Nechval, N. A., Bērziņš, G., & Nechval, K. N. (2024). Novel constructing adequate simultaneous predictive limits or confidence intervals for future outcomes via pivotal quantities and ancillary statistics in the case of parametric uncertainty of applied real-life models. Aeronautics and Aerospace Open Access Journal, 8(1), 110–113. https://doi.org/10.15406/aaoaj.2024.08.00197
Crossref
Google Scholar
Nguyen, V. Q. T., & Vergara-Alert, C. (2023). Political uncertainty and housing markets. Journal of Housing Economics, 61, 101952. https://doi.org/10.1016/j. jhe.2023.101952
Crossref
Google Scholar
Pavesi, L., Volpi, E., & Fiori, A. (2024). Flood risk assessment through large-scale modeling under uncertainty. Natural Hazards and Earth System Sciences. https://doi.org/10.5194/nhess-2024-114
Crossref
Google Scholar
Peng, L., Wang, Y., & Pan, Z. (2024). A modeling study of insurance and real estate risk assessment in the context of global climate change. Highlights in Business, Economics and Management, 3(2), 123–134. https://doi.org/10.54097/6sf0hz30
Crossref
Google Scholar
Polotskaya, K., Muñoz-Valencia, C. S., Rabasa, A., Quesada, J. A., Orozco-Beltrán, D., & Barber, X. (2024). Bayesian networks for the diagnosis and prognosis of diseases: A scoping review. Machine Learning and Knowledge Extraction, 6(2), 1243–1262. https://doi.org/10.3390/make6020058
Crossref
Google Scholar
Pulkkinen, S., Ahmed, A., & Cui, Y. (2023). DEUCE v1.0: A neural network for probabilistic precipitation nowcasting with aleatoric and epistemic uncertainties. Geoscientific Model Development. https://doi. org/10.5194/egusphere-2023-1100
Google Scholar
Qin, Y., & Li, G. (2024). Consensus reaching with the dynamic hybrid trust network in group decision making based on an extensive bounded confidence. Expert Systems with Applications, 255A, 124448. https://doi.org/10.1016/j.eswa.2024.124448
Crossref
Google Scholar
Qu, Y., Azlina, A., & Kassim, M. (2023). The impact of economic policy uncertainty on investment in real estate corporations based on sustainable development: The mediating role of house prices. Sustainability, 15(21), 15318. https://doi.org/10.3390/su152115318
Crossref
Google Scholar
Sabbatini, F., & Calegari, R. (2024). Untying black boxes with clustering-based symbolic knowledge extraction. Intelligenza Artificiale [Artificial Intelligence], 18(1), 21–34. https://doi.org/10.3233/ia-240026
Crossref
Google Scholar
Saranathan, A. M., Werther, M., Balasubramanian, S. V., Odermatt, D., & Pahlevan, N. (2024). Assessment of advanced neural networks for the dual estimation of water quality indicators and their uncertainties. Frontiers in Remote Sensing, 5, 1383147. https://doi. org/10.3389/frsen.2024.1383147
Crossref
Google Scholar
Siemon, M. S. N., Moeslund, T. B., Norton, B., & Nasrollahi, K. (2024). Bounding boxes and probabilistic graphical models: Video anomaly detection simplified. arXiv. https://doi.org/10.48550/arxiv.2407.06000
Google Scholar
Yang, J. (2023). Data-driven investment strategies in in¬ternational real estate markets: A predictive analytics approach. International Journal of Computer Science and Information Technology, 3(1), 32. https://doi. org/10.62051/ijcsit.v3n1.32
Crossref
Google Scholar
Yang, T., Han, C., Luo, C., Gupta, P., Phillips, J. M., & Ai, Q. (2024). Mitigating exploitation bias in learning to rank with an uncertainty-aware empirical Bayes approach. ACM Digital Library, 1486–1496. https://doi.org/10.1145/3589334.3645487
Crossref
Google Scholar
Yavorska, V. V., & Shynkarenko, S. L. (2024). Modern real estate market of Ukraine: Risks and opportuni ties in city renewal. Visnik Odeskogo Nacionalnogo Unìversitetu [Bulletin of the Odessa National Univer¬sity], 1(44), 305–382. https://doi.org/10.18524/2303- 9914.2024.1(44).305382
Google Scholar
Zhang, K., Chen, N. J., Liu, J., Yin, S., & Beer, M. (2023). An efficient meta-model-based method for uncertainty propagation problems involving non-parameterized probability-boxes. Reliability Engineering & System Safety, 238, 109477. https://doi. org/10.1016/j.ress.2023.109477
Crossref
Google Scholar
Zhang, X., Ma, X., & Xiao-jia, Z. (2024). Empirical study on real estate mass appraisal based on dynamic neural networks. Buildings, 14(7), 2199. https://doi. org/10.3390/buildings14072199
Crossref
Google Scholar
Zhang, L., Li, C., Su, H., Xu, Y., Da Ronch, A., & Gong, C. (2024). An efficient uncertainty propagation method for nonlinear dynamics with distribution-free P-box processes. Chinese Journal of Aeronautics. https://doi. org/10.1016/j.cja.2024.05.028
Crossref
Google Scholar