Analysis of the influence of UV light exposure time on hardness and density properties of SLA models

Łukasz Dzadz

University of Warmia and Mazury in Olsztyn
http://orcid.org/0000-0002-5338-5931

Bartosz Pszczółkowski

University of Warmia and Mazury in Olsztyn
https://orcid.org/0000-0002-7985-9488


Abstract

The article analysis the effect of exposure to ultraviolet light on the hardening process
of the model made in the SLA technology. Research samples were created with the SLA additive technique using a 10s exposure time. In this experiment, the change in item hardness and density over a 96-hour period was analysed. Light exposure time for details of an item made in SLA technology results in an increase in hardness. At the same time are observed, changes in density and stabilization of both parameters with increasing exposure time to UV light.


Keywords:

SLA, light-curing resin, hardness, density, UV

Supporting Agencies

This study was partially supported by the University of Warmia and Mazury in Olsztyn (grant No. 16.610.001-300).


Anseth, K. S., & Bowman, C. N. (1994). Kinetic Gelation model predictions of crosslinked polymer network microstructure. Chemical Engineering Science, 49(14), 2207–2217. https://doi.org/10.1016/0009-2509(94)E0055-U   Google Scholar

Bartolo, P. J., & Gibson, I. (2011). Stereolithography: materials, processes and applications (P. Jorge Bártolo (ed.)). Springer Science & Business Media. https://doi.org/10.1007/978-0-387-92904-0   Google Scholar

Ben Redwood, Filemon Scöffer, & Brian Garret. (2017). The 3D Printing Handbook: Technologies, design and applications (B. Redwood, F. Schöffer, & B. Garret (eds.)).   Google Scholar

Bociong, K., Krasowski, M., Szczesio, A., Anyszka, R., & Kalicka, K. (2018). Modyfikacja światłoutwardzalnego kompozytu stomatologicznego wybranymi poliedrycznymi oligomerycznymi silseskwioksanami. Polimery, 7–8, 515–523.   Google Scholar

Boots, H. M. J., & Pandey, R. B. (1984). Qualitative percolation study of free-radical cross-linking polymerization. Polymer Bulletin, 11(5), 415–420. https://doi.org/10.1007/BF00265480   Google Scholar

Chantarapanich, N., Puttawibul, P., Sitthiseripratip, K., Sucharitpwatskul, S., & Chantaweroad, S. (2013). Study of the mechanical properties of photo-cured epoxy resin fabricated by stereolithography process. Songklanakarin Journal of Science and Technology, 35(1), 91–98.   Google Scholar

Cosmi, F., & Dal Maso, A. (2020). A mechanical characterization of SLA 3D-printed specimens for low-budget applications. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.04.602   Google Scholar

Cramer, N. B., & Bowman, C. N. (2001). Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared. Journal of Polymer Science, Part A: Polymer Chemistry, 39(19), 3311–3319. https://doi.org/10.1002/pola.1314   Google Scholar

Czech, Z., & Minciel, E. (2015). Światłoutwardzalne Kompozyty Zawierające Akrylowane Żywice Wielofunkcyjne : Skrócony Przegląd Literaturowy. Aparatura Badawcza i Dydaktyczna, T. 20, 270–275.   Google Scholar

Davidson, C. L., & de Gee, A. J. (1984). Relaxation of Polymerization Contraction Stresses by Flow in Dental Composites. Journal of Dental Research, 63(2), 146–148. https://doi.org/10.1177/00220345840630021001   Google Scholar

Davidson, C. L., & Feilzer, A. J. (1997). Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. In Journal of Dentistry (Vol. 25, Issue 6, pp. 435–440). Elsevier BV. https://doi.org/10.1016/S0300-5712(96)00063-2   Google Scholar

Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. In Additive Manufacturing (Vol. 20, pp. 44–67). Elsevier B.V. https://doi.org/10.1016/j.addma.2017.12.002   Google Scholar

Dulieu-Barton, J. M., & Fulton, M. C. (2000). Mechanical properties of a typical stereolithography resin. Strain, 36(2), 81–87. https://doi.org/10.1111/j.1475-1305.2000.tb01177.x   Google Scholar

Fan, P. L., Wozniak, W. T., Reyes, W. D., & Stanford, J. W. (1987). Irradiance of visible light-curing units and voltage variation effects. Journal of the American Dental Association (1939), 115(3), 442–445. https://doi.org/10.14219/jada.archive.1987.0252   Google Scholar

Ferracane, J. L., Mitchem, J. C., Condon, J. R., & Todd, R. (1997). Wear and marginal breakdown of composites with various degrees of cure. Journal of Dental Research, 76(8), 1508–1516. https://doi.org/10.1177/00220345970760081401   Google Scholar

Formlabs. (2018). White Paper - Validating Isotropy in SLA 3D Printing.   Google Scholar

Formlabs Inc. (2017). The Ultimate Guide to Stereolithography (SLA) 3D Printing. March, 1–23. https://formlabs.com/blog/ultimate-guide-to-stereolithography-sla-3d-printing/   Google Scholar

Fuh, J. Y. H., Chooo, Y. S., Lu, L., Nee, A. Y. C., Wong, Y. S., Wang, W. L., Miyazawa, T., & Ho, S. H. (1997). Post-cure shrinkage of photo-sensitive material used in laser lithography process. Journal of Materials Processing Technology, 63(1–3), 887–891. https://doi.org/10.1016/S0924-0136(96)02744-6   Google Scholar

Hague, R., Mansour, S., Saleh, N., & Harris, R. (2004). Materials analysis of stereolithography resins for use in Rapid Manufacturing. Journal of Materials Science, 39(7), 2457–2464. https://doi.org/10.1023/B:JMSC.0000020010.73768.4a   Google Scholar

Huang, Q., Zhang, J., Sabbaghi, A., & Dasgupta, T. (2015). Optimal offline compensation of shape shrinkage for three-dimensional printing processes. IIE Transactions (Institute of Industrial Engineers), 47(5), 431–441. https://doi.org/10.1080/0740817X.2014.955599   Google Scholar

Hull, C. W. (1998). Method for production of three-dimensional objects by stereolithography (Patent No. 5,762,856). In Patent (5,762,856). https://patents.google.com/patent/US5444220A/en   Google Scholar

Ian Gibson, David W. Rosen, & Stucker, B. (2010). Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing. In CIRP Encyclopedia of Production Engineering. Springer. https://doi.org/10.1007/978-3-662-53120-4_16866   Google Scholar

Jacobs, P. F. (1992). Rapid prototyping & manufacturing— Fundamentals of stereolithography. Journal of Manufacturing Systems, 12(5). https://doi.org/10.1016/0278-6125(93)90311-g   Google Scholar

Le Xuan, H., & Decker, C. (1993). Photocrosslinking of acrylated natural rubber. Journal of Polymer Science Part A: Polymer Chemistry, 31(3), 769–780. https://doi.org/10.1002/pola.1993.080310323   Google Scholar

Liravi, F., Das, S., & Zhou, C. (2015). Separation force analysis and prediction based on cohesive element model for constrained-surface Stereolithography processes. CAD Computer Aided Design, 69, 134–142. https://doi.org/10.1016/j.cad.2015.05.002   Google Scholar

Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050   Google Scholar

Pan, Y., He, H., Xu, J., & Feinerman, A. (2017). Study of separation force in constrained surface projection stereolithography. Rapid Prototyping Journal, 23(2), 353–361. https://doi.org/10.1108/RPJ-12-2015-0188   Google Scholar

PEARSON, G. J., & LONGMAN, C. M. (1989). Water sorption and solubility of resin‐based materials following inadequate polymerization by a visible‐light curing system. Journal of Oral Rehabilitation, 16(1), 57–61. https://doi.org/10.1111/j.1365-2842.1989.tb01317.x   Google Scholar

Podgórski, M., Becka, E., Claudino, M., Flores, A., Shah, P. K., Stansbury, J. W., & Bowman, C. N. (2015). Ester-free thiol-ene dental restoratives - Part B: Composite development. Dental Materials, 31(11), 1263–1270. https://doi.org/10.1016/j.dental.2015.08.147   Google Scholar

Schmidleithner, C., & Kalaskar, D. M. (2018). Stereolithography. In 3D Printing. InTech. https://doi.org/10.5772/intechopen.78147   Google Scholar

SHORTALL, A. C., WILSON, H. J., & HARRINGTON, E. (1995). Depth of cure of radiation ‐ activated composite restoratives‐ Influence of shade and opacity. Journal of Oral Rehabilitation, 22(5), 337–342. https://doi.org/10.1111/j.1365-2842.1995.tb00782.x   Google Scholar

Soh, M. S., & Yap, A. U. J. (2004). Influence of curing modes on crosslink density in polymer structures. Journal of Dentistry, 32(4), 321–326. https://doi.org/10.1016/j.jdent.2004.01.012   Google Scholar

Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P. (2008). Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyping Journal, 14(2), 72–80. https://doi.org/10.1108/13552540810862028   Google Scholar

Vargas, M. A., Cobb, D. S., & Schmit, J. L. (1998). Polymerization of composite resins: Argon laser vs conventional light. Operative Dentistry, 23(2), 87–93. https://europepmc.org/article/med/9573794   Google Scholar

Venhoven, B. A. M., de Gee, A. J., & Davidson, C. L. (1993). Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins. Biomaterials, 14(11), 871–875. https://doi.org/10.1016/0142-9612(93)90010-Y   Google Scholar

Wang, J., Das, S., Rai, R., & Zhou, C. (2018). Data-driven simulation for fast prediction of pull-up process in bottom-up stereo-lithography. CAD Computer Aided Design, 99, 29–42. https://doi.org/10.1016/j.cad.2018.02.002   Google Scholar

Zguris, Z. (2016). How Mechanical Properties of Stereolithography 3D Prints are Affected by UV Curing.   Google Scholar

Download


Published
2020-12-09

Cited by

Dzadz, Łukasz, & Pszczółkowski, B. (2020). Analysis of the influence of UV light exposure time on hardness and density properties of SLA models. Technical Sciences, 23(2), 175–184. https://doi.org/10.31648/ts.6119

Łukasz Dzadz 
University of Warmia and Mazury in Olsztyn
http://orcid.org/0000-0002-5338-5931
Bartosz Pszczółkowski 
University of Warmia and Mazury in Olsztyn
https://orcid.org/0000-0002-7985-9488



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.





-->