Analysis of Total, Direct and Indirect Cost Outliers in a Polish Specialist Hospital
Małgorzata Cygańska
Department of Finance and Banking, Faculty of Economics, University of Warmia and Mazury in OlsztynMichael Thoene
Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in OlsztynAmelia Silva
Centre for Organisational and Social Studies, Polytechnic of PortoAbstract
The purpose of this study is to analyze the factors facilitating the identification of the three categories of cost outliers. They are known as total cost outliers (TCO), direct cost outliers (DCO), and indirect cost outliers (ICO). 4,570 patients have been analyzed. To evaluate the factors that influence the patient being a cost outlier in a hospital; age, length of stay, gender, type of admission, reason for discharge, and type of department were considered. Multivariable logistic regression was used in the study. In our research TCO comprised 9% of the study sample. The percentage of DCO was slightly higher (10%) and ICO was slightly lower (8%). Total cost outliers accounted for almost 37% of total hospital costs, 40% of direct costs, and 34% of indirect costs. The direct cost outliers accounted for 44.39% of direct costs, and indirect cost outliers accounted for 34.91% of indirect costs. It was discovered that, in terms of gender, men are positively correlated with higher cost utilization. The risk of being a cost outlier increases risk in terms of death and referral for further treatment. The type of admission factor can only be a predictor of being an ICO. The risk of a patient being a length of stay outlier increases far more for the ICO (more than 580 times) than in the case of a DCO (3.81 times) or a TCO (13.79 times). The analysis suggests that not only TCO, but also DCO and ICO, should have high priority for hospital managers concerned with variations in the costs of care.
Keywords:
direct costs, indirect costs, outliers, hospital management, length of stayReferences
Brimhall B.B., Dean T., Hunt E.L., Siegrist R.B., Reiquam W. 2003. Age and laboratory costs for hospitalized medical patients. Archives of Pathology & Laboratory Medicine, 127(2): 169-177.
Calver J., Brameld K.J., Preen D.B., Alexia S.J. 2006. High-cost users of hospital beds in Western Australia: a population-based record linkage study. Medical Journal of Australia, 184(8): 393.
Change in methodology for determining payment for extraordinarily high-cost cases (cost outliers) under the acute care hospital inpatient and long- term care hospital prospective payment systems. 2003. Medicare Program. Fed. Regist., 68: 34493-34515.
Cockerham W.C. 2014. Medical sociology. John Wiley & Sons, Ltd.
Cooney R.N., HaluckR.S., Ku J., Bass T., MacLeod J., BrunnerH., Miller C.A. 2003. Analysis of cost outliers after gastric bypass surgery: what can we learn? Obesity Surgery, 13(1): 29-36.
Cots F., Elvira D., Castells X., Dalmau E. 2000. Medicare's DRG-weights in a European environment: the Spanish experience. Health Policy, 51(1): 31-47.
Dahl D., Wojtal G.G., Breslow M.J., Holl R., Huguez D., Stone D., Korpi G. 2012. The High Cost of Low-Acuity ICU Outliers. J. Healthc. Manag., 57(6): 421-433.
Dean K. 1989. Self-care components of lifestyles: the importance of gender, attitudes and the social situation. Social Science & Medicine, 29(2): 137-152.
Dexter F., Lubarsky D.A. 2004. Using length of stay data from a hospital to evaluate whether limiting elective surgery at the hospital is an inappropriate decision. J. Clin. Anesth., 16(6): 421-425.
Freitas A., Silva-Costa T., Lopes F., Garcia-Lema I., Teixeira- Pinto A., Brazdil P., Costa-Pereira A. 2012. Factors influencing hospital high length of stay outliers. BMC health services research, 12(1): 1.
Huang Y.C., Hu C.J., Lee T.H., Yang J.T., Weng H.H., Lin L.C., Lai S.L. 2013.The impact factors on the cost and length of stay among acute ischemic stroke. J. Stroke Cerebrovasc. Dis., 22(7): e152-158.
MĄCZYŃSKI G. 2011. Restrukturyzacja i funkcjonowanie samodzielnych publicznych zakładów opieki zdrowotnej na gruncie ustawy o działalności leczniczej. Między Scyllą regulacji prawnych a Charybdą braku efektywności finansowej. Polityka Zdrowotna, IX: 67- 71.
Mapela D.W., Mcmillanb G.P., Frostc F.J., Hurleyc J.S., Picchic M.A., Lydicka E., Spencerd M.D. 2005. Predicting the costs of managing patients with chronic obstructive pulmonary disease. Respir. Med., 99: 1325-1333. D0I:10.1016/j.rmed.2005.03.001
Munoz E., Zahtz G., Lamantia J., Chalfin D., Lackner R., Wise L. 1989. Hospital resource consumption and outcome: route of admission and age for hospitalized otolaryngology patients. Archives of Otolaryngology- Head & Neck Surgery, 115(1): 87-91.
Omachonu V.K., Suthummanon S., Akcin M., Asfour S. 2004. Predicting length of stay for Medicare patients at a teaching hospital. Health Services Management Research, 17(1): 1-12.
Pirson M., Dramaix M., Leclercq P., Jackson T. 2006a. Analysis of cost outliers within APR-DRGs in a Belgian general hospital: Two complementary approaches. Health Policy, 76(1): 13-25.
Pirson M., Martins D., Jackson T., Dramaix M., Leclercq P. 2006b. Prospective casemix-based funding, analysis and financial impact of cost outliers in all-patient refined diagnosis related groups in three Belgian general hospital. Eur. J. Health. Econ., 7: 55-65.
Prados A., Bordonaba D., Sicras A., Estelrich J., Aza M., Calderon A., Magdalena J. 2008. Pharmacy cost outliers in primary care; multilevel approach based on ACG in the Spanish context. BMC Health Services Research, 8(1): 1.
Prados T.A., Sicras M.A., Estelrich B.J., Calderon L.A., Rabanaque H.M., Lopez C.A. 2009. Identification of pharmacy cost outliers in primary care. Atencion primaria/Sociedad Espanola de Medicina de Familia y Comunitaria, 41(8): 453-459.
Raulinajtys-Grzybek M. 2014. Cost accounting models used for price-setting of health services: An international review. Health Policy, 118(3): 341-353.ą
Rimar J.M., Diers D. 2006. Inpatient nursing, unit volume, length of stay, cost and mortality. Nurs. Econ.24(6): 298-307, 279.
Rottger J., Scheller-Kreinsen D., Busse R. 2012. Patient - level hospital costs and length of stay after conventional versus minimally invasive total hip replacement: a propensity- matched analysis. Value Health, 15: 999-1004. DOI: 10.1016/j.jval.2012.06.008
Russell-Weisz D., Hindle D. 2000. High length-of-stay outliers under casemix funding of a remote rural community with a high proportion of Aboriginal patients. Australian Health Review, 23(2): 47-61.
Sackman J.E., Citrin L. 2014. Cracking down on cost outliers. Healthc. Financ. Manage., 68(3): 58-62.
Sahota O., Morgan N., Moran C.G. 2012. The direct cost of acute hip fracture care in care home residents in the UK. Osteoporos. Int., 23:917-920. DOI: 10.1007/s00198-011-1651-9.
Seshamani M., Gray A. 2004. Time to death and health expenditure: an improved model for the impact of demographic change on health care costs. Age and Ageing.
Szetela A., Lichwa K., Korniejenko K. 2011. Krytyczna analiza polityki zdrowotnej w zakresie przekształcania szpitali publicznych w spółki prawa handlowego. Zarządzanie Publiczne, 13: 49-64.
Sznajder M., Leleu G., Buonamico G., Auvert В., Aegerter P., Merliere Y., Dutheil M., Guidet В., Le Gall J.R. 1998. Estimation of direct cost and resource allocation in intensive care: correlation with Omega system. Intensive Care Med., 24: 582-589.
Taheri P.A., Butz D.A., Greenfiel L.J. 2000. Length of stay has minimal impact on the cost of hospital admission. J. Am. Coll. Surg., 191(2): 123- 130.
Torres A.P., Mainarb A.S., Bennasarc J.E., Larranaga A.C., Rabanaque Hernandeza M.J., Lopez A. 2009. Identificación de pacientes hiperconsumidores de farmacia en atención primaria. Identification of pharmacy cost outliers in primary care. Atención Primaria, 41(8): 453-459. Doi:10.1016/j.aprim.2009.01.002.
Uematsu H., Kunisawa S., Yamashita K., Imanaka Y. 2015. The Impact of Patient Profiles and Procedures on Hospitalization Costs through Length of Stay in Community-Acquired Pneumonia Patients Based on a Japanese Administrative Database. PloS one, 10(4), e0125284.
Weichle T., Hynes D.M., Durazo- Arvizu R., Tarlov E., Zhang Q. 2013. Impact of alternative approaches to assess outlying and influential observations on health care costs. SpringerPlus, 2: 614.
Wen Y.W., Tsai Y.W., Wu D.B.C., Chen P.F. 2013. The Impact of Outliers on Net- Benefit Regression Model in Cost-Effectiveness Analysis. PLoS one, 8(6): e65930. doi: 10.1371/journal.pone.0065930.
Wu C.X., Tan W.S., Toh M.P.H.S., Heng B.H. 2012. Stratifying healthcare costs using the Diabetes Complication Severity Index. Journal of Diabetes and its Complications, 26(2): 107-112.
Zadłużenie samodzielnych publicznych zakładów opieki zdrowotnej. Informacje dla Sejmowej Komisji Zdrowia. 2004. Ministerstwo Zdrowia, Warszawa, p. 3-16.
Department of Finance and Banking, Faculty of Economics, University of Warmia and Mazury in Olsztyn
Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn
Centre for Organisational and Social Studies, Polytechnic of Porto
License
An Author declares that his paper has not been published before (under the same or another title, or is a part of another publication) and does not infringe copyrights of other persons**. At the same time, the Author transfers to the Publisher the exclusive right to publish and to circulate this work in print in the form of a non-serial journal publication and in a form of an electronic publication.
The journal is available on Creative Common license CC-BY-NC-ND