Application of Methods of Two-Dimensional Data Analysis Based on Observation Depth Measure in a Sample

Małgorzata Kobylińska

Faculty of Economic Sciences, University of Warmia and Mazury in Olsztyn
https://orcid.org/0000-0001-9674-5418


Abstract

In Poland, cycling is becoming increasingly popular as a fast form of transport and recreation. The aim of this study was to assess the density of bicycle paths and the percentage of road accidents involving bicycles as the responsible vehicle in voivodeships, using selected statistical methods based on observation depth measure in a sample. The methods used allowed for the ranking of voivodeships in terms of the values of the diagnostic features studied and the identification of voivodeships with the lowest or highest values of bicycle path density and the percentage of road accidents in which a bicycle was the vehicle responsible. Based on the analysis, it can be concluded that the highest density of bicycle paths in the years under study was recorded in the Pomorskie, Wielkopolskie, and Śląskie voivodeships, while the highest percentage of road accidents in which a bicycle was the perpetrator was recorded in the Małopolskie and Podkarpackie voivodeships. The lowest density of bicycle paths was recorded in the Warmińsko-Mazurskie voivodeship.


Keywords:

transport infrastructure, robust data analysis methods, observation depth measure in a sample


Dębowska-Mróz, M., Lis, P., Szymanek, A., & Zawisza, T. (2017). Rower miejski jako element systemu transportowego w miastach. Autobusy: technika. eksploatacja. systemy transportowe, 18.   Google Scholar

GUS. (2024). Podstawowe pojęcia. Droga dla rowerów. Retrieved from https://bdl.stat.gov.pl/bdl/metadane/metryka/3164 (6.08.2025).   Google Scholar

GUS. (2022). Uczestnictwo w sporcie i rekreacji ruchowej w 2021 r. Retrieved from https://stat.gov.pl/obszary-tematyczne/kultura-turystyka-sport/sport/uczestnictwo-w-sporcie-i-rekreacji-ruchowej-w-2021-r-,5,2.html (6.08.2025).   Google Scholar

Heilpern, S. (2005). Obserwacje nietypowe – wielowymiarowy. Prace Naukowe Akademii Ekonomicznej we Wrocławiu, 1097, 68-87.   Google Scholar

Hyła, M. (2023). Polityka rowerowa polskich miast. Badania Obserwatorium Polityki Miejskiej, 1-77.
Crossref   Google Scholar

Liu, R. Y. (1990). On a Notion of Data Depth Based on Random Simplices. The Annals of Statistics, 18, 405-414.
Crossref   Google Scholar

Liu, R. Y., Parelius, J. M., & Singh, K. (1990). Multivariate Analysis by Data Depth: Descriptive Statistics. Graphics and Inference. The Annals of Statistics, 27, 783-858.
Crossref   Google Scholar

Local Data Bank. (2025). Retrieved from https://bdl.stat.gov.pl/bdl/dane/podgrup/temat. dane z kategorii Transport i Łączność (5.03.2025).   Google Scholar

Kosiorowski, D. (2012). Statystyczne funkcje głębi w odpornej analizie ekonomicznej. Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków.   Google Scholar

Maronna, R. A., Martin, R. D., Yohai, V. J., & Salibián-Barrera, M. (2019). Robust statistics: theory and methods (with R), John Wiley & Sons.
Crossref   Google Scholar

Mosler, K. (2013). Depth statistics. Robustness and complex data structures: Festschrift in Honour of Ursula Gather, 17-34.
Crossref   Google Scholar

Mosler, K., & Mozharovskyi, P. (2022). Choosing among notions of multivariate depth statistics. Statistical Science, 37(3), 348-368. https://doi.org/10.1214/21-STS827
Crossref   Google Scholar

Pawełek, B., & Zeliaś, A. (1996). Metody wykrywania obserwacji nietypowych w badaniach ekonomicznych. Zeszyty Naukowe Akademia Ekonomiczna w Krakowie, 475, 5-27.   Google Scholar

Ruts, I., & Rousseeuw, P. J. (1996). Computing Depth Contours of Bivariate Point Clouds. Computational Statistics & Data Analysis, 23(1), 153-168.
Crossref   Google Scholar

Sommer, H., & Zakrzewski, G. (2021). Bezpieczeństwo na drogach rowerowych. Studia Gdańskie. Wizje i rzeczywistość, 17, 311-331.
Crossref   Google Scholar

Struyf, A., & Rousseeuw, P. J. (2000). High-dimensional computation of the deepest location. Computational Statistics & Data Analysis, 34(4), 415-426.
Crossref   Google Scholar

Tukey, J. W. (1975). Mathematics and Picturing Data. Proceedings of the 1974 international congress of mathematicians, Vol. 2., 523-531.
Crossref   Google Scholar

Wagner, W., & Kobylińska, M. (2002). Przegląd metod wyznaczania miar zanurzania w próbie dwuwymiarowej. Przegląd Statystyczny, 49(4), 119-132.   Google Scholar

Download


Published
2025-12-11

Cited by

Kobylińska, M. (2025). Application of Methods of Two-Dimensional Data Analysis Based on Observation Depth Measure in a Sample. Olsztyn Economic Journal, 20(2), 185–197. https://doi.org/10.31648/oej.11936

Małgorzata Kobylińska 
Faculty of Economic Sciences, University of Warmia and Mazury in Olsztyn
https://orcid.org/0000-0001-9674-5418



License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

An Author declares that his paper has not been published before (under the same or another title, or is a part of another publication) and does not infringe copyrights of other persons**. At the same time, the Author transfers to the Publisher the exclusive right to publish and to circulate this work in print in the form of a non-serial journal publication and in a form of an electronic publication.

Author's statement

The journal is available on Creative Common license CC-BY-NC-ND