Alfa Cronbacha – co daje dobre wyniki? Kilka uwag dotyczących budowania kwestionariuszy psychologicznych
Tomasz Rak
Uniwersytet Papieski Jana Pawła II w Krakowiehttps://orcid.org/0000-0002-3522-5176
Szymon Wrześniowski
Uniwersytet Papieski Jana Pawła II w Krakowiehttps://orcid.org/0000-0001-5553-4016
Abstrakt
Cokolwiek mierzy alfa Cronbacha – nie jest to spójność wewnętrzna, powszechnie błędnie rozumiana w psychologii jako średnia siła związków pomiędzy pozycjami kwestionariusza. W tym artykule badamy powody, dla których rozumienie alfa jako spójności wewnętrznej jest błędne i skupiamy się na działaniu inflacji (przeszacowania) współczynnika alfa w praktyce. Na bazie symulacji komputerowych określiliśmy dokładny (wspólny) wpływ na wartość alfa: liczby respondentów, zakresu skal pomiarowych (Likerta), liczby pytań w kwestionariuszu (itemów) oraz średniej korelacji między pozycjami. Wyniki potwierdzają występowanie inflacji poziomu alfa ze względu na liczbę pytań: alfa osiąga zadowalające wartości nawet przy minimalnej spójności wewnętrznej, jeśli w kwestionariuszu jest dużo itemów. Sugerujemy, że w przypadku słabych narzędzi pomiarowych rzetelność może być przeszacowywana ze względu na prezentowany tu krzywolinowy wzrost alfa. Liczba osób badanych i zakres skali nie miały wpływu na wartość alfa.
Słowa kluczowe:
rzetelność, alfa Cronbacha, inflacja alfa, spójność wewnętrzna, symulacjeBibliografia
Anselmi, P., Colledani, D., Robusto, E. (2019). A comparison of classical and modern measures of internal consistency. Frontiers in Psychology, 10, artykuł 2714. https://doi.org/10.3389/fpsyg.2019.02714
Crossref
Google Scholar
Bajpai, S., Bajpai, R. (2014). Goodness of measurement: Reliability and validity. International Journal of Medical Science and Public Health, 3(2), 112‒115. https://doi.org/10.5455/ijmsph.2013.191120133
Crossref
Google Scholar
Barbaranelli, C., Lee, C. S., Vellone, E., Riegel, B. (2015). The problem with Cronbach's alpha: comment on Sijtsma and van der Ark (2015). Nursing Research, 64(2), 140‒145. https://doi.org/10.1097/NNR.0000000000000079
Crossref
Google Scholar
Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika, 74(1), 137‒143. https://doi.org/10.1007/s11336-008-9100-1
Crossref
Google Scholar
Bland, J. M., Altman, D. G. (1997). Statistics notes: Cronbach's alpha. British Medical Journal, 314(7080), artykuł 572. https://doi.org/10.1136/bmj.314.7080.572
Crossref
Google Scholar
Bonett, D. G., Wright, T. A. (2015). Cronbach's alpha reliability: Interval estimation, hypothesis testing, and sample size planning. Journal of Organizational Behavior, 36(1), 3‒15. https://doi.org/10.1002/job.1960
Crossref
Google Scholar
Borsboom, D. (2006). The attack of the psychometricians. Psychometrika, 71(3), 425‒440. https://doi.org/10.1007/s11336-006-1447-6
Crossref
Google Scholar
Borsboom, D., Mellenbergh, G. J. (2002). True scores, latent variables, and constructs: A comment on Schmidt and Hunter. Intelligence, 30(6), 505‒514. https://doi.org/10.1016/S0160-2896(02)00082-X
Crossref
Google Scholar
Brannick, M. T. (1995). Critical comments on applying covariance structure modeling. Journal of Organizational Behavior, 16(3), 201‒213. https://doi.org/10.1002/job.4030160303
Crossref
Google Scholar
Breckler, S. J. (1990). Applications of covariance structure modeling in psychology: Cause for concern? Psychological Bulletin, 107(2), 260‒273. https://doi.org/10.1037/0033-2909.107.2.260
Crossref
Google Scholar
Bujang, M. A., Omar, E. D., Baharum, N. A. (2018). A review on sample size determination for Cronbach’s alpha test: a simple guide for researchers. The Malaysian Journal Of Medical Sciences: MJMS, 25(6), 85‒99. https://doi.org/10.21315/mjms2018.25.6.9
Crossref
Google Scholar
Chan, E. K. (2014). Standards and guidelines for validation practices: Development and evaluation of measurement instruments. W: Validity and validation in social, behavioral, and health sciences (s. 9‒24). Springer.
Crossref
Google Scholar
Chang, L. (1994). A psychometric evaluation of 4-point and 6-point Likert-type scales in relation to reliability and validity. Applied Psychological Measurement, 18(3), 205‒215. https://doi.org/10.1177/014662169401800302
Crossref
Google Scholar
Charter, R. A. (1999). Sample size requirements for precise estimates of reliability, generalizability, and validity coefficients. Journal of Clinical and Experimental Neuropsychology, 21(4), 559‒566. https://doi.org/10.1007/978-3-319-07794-9_2
Crossref
Google Scholar
Cho, E. (2022). The accuracy of reliability coefficients: A reanalysis of existing simulations. Psychological Methods. Online first. https://doi.org/10.1037/met0000475
Crossref
Google Scholar
Cho, E., Kim, S. (2015). Cronbach’s coefficient alpha: Well known but poorly understood. Organizational Research Methods, 18(2), 207‒230. https://doi.org/10.1177/1094428114555994
Crossref
Google Scholar
Comrey, A. L., Lee, H. B. (1992). A first course in factor analysis (wyd. 2). Erlbaum. Google Scholar
de Vet, H. C., Mokkink, L. B., Mosmuller, D. G., Terwee, C. B. (2017). Spearman–Brown prophecy formula and Cronbach's alpha: different faces of reliability and opportunities for new applications. Journal of Clinical Epidemiology, 85, 45‒49. https://doi.org/10.1016/j.jclinepi.2017.01.013
Crossref
Google Scholar
DeVellis, R. F. (2006). Classical test theory. Medical Care, 44(11), S50‒S59. https://doi.org/10.1097/01.mlr.0000245426.10853.30
Crossref
Google Scholar
Dimov, I. T. (2008). Monte Carlo methods for applied scientists. World Scientific. https://doi.org/10.1142/9789812779892
Crossref
Google Scholar
Duhachek, A., Coughlan, A. T., Iacobucci, D. (2005). Results on the standard error of the coefficient alpha index of reliability. Marketing Science, 24(2), 294‒301. https://doi.org/10.1287/mksc.1040.0097
Crossref
Google Scholar
Dunn, T. J., Baguley, T., Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105(3), 399‒412. https://doi.org/10.1111/bjop.12046
Crossref
Google Scholar
Dunn, W. L., Shultis, J. K. (2011). Exploring Monte Carlo methods. Elsevier. https://doi.org/10.1016/B978-0-444-51575-9.00007-5
Crossref
Google Scholar
Eisinga, R., Grotenhuis, M. T., Pelzer, B. (2013). The reliability of a two-item scale: Pearson, Cronbach, or Spearman-Brown? International Journal of Public Health, 58(4), 637‒642. https://doi.org/10.1007/s00038-012-0416-3
Crossref
Google Scholar
Flake, J. K., Pek, J., Hehman, E. (2017). Construct validation in social and personality research: Current practice and recommendations. Social Psychological and Personality Science, 8(4), 370‒378. https://doi.org/10.1177/1948550617693063
Crossref
Google Scholar
Flora, D. B. (2020). Your coefficient alpha is probably wrong, but which coefficient omega is right? A tutorial on using R to obtain better reliability estimates. Advances in Methods and Practices in Psychological Science, 3(4), 484‒501. https://doi.org/10.1177/2515245920951747
Crossref
Google Scholar
Gignac, G. E., Bates, T. C., Jang, K. L. (2007). Implications relevant to CFA model misfit, reliability, and the five-factor model as measured by the NEO-FFI. Personality and Individual Differences, 43(5), 1051‒1062. https://doi.org/10.1016/j.paid.2007.02.024
Crossref
Google Scholar
Golafshani, N. (2003). Understanding reliability and validity in qualitative research. The Qualitative Report, 8(4), 597‒607. Google Scholar
Green, S. B., Yang, Y. (2009). Commentary on coefficient alpha: A cautionary tale. Psychometrika, 74(1), 121‒135. https://doi.org/10.1007/s11336-008-9098-4
Crossref
Google Scholar
Gruszczyńska, E. (2012). Kwestionariusz Samooceny Zysków i Strat – polska adaptacja Cor-Evaluation Se Hobfolla i jej podstawowe właściwości psychometryczne. W: E. Bielawska-Batorowicz i B. Dudek (red.), Teoria zachowania zasobów Stevana E. Hobfolla. Polskie doświadczenia. Wydawnictwo Uniwersytetu Łódzkiego. Google Scholar
Guidroz, A. M., Yankelevich, M., Barger, P., Gillespie, M. A., Zickar, M. J. (2009). Practical considerations for creating and using organizational survey norms: Lessons from two long-term projects. Consulting Psychology Journal: Practice and Research, 61(2), 85‒102. https://doi.org/10.1037/a0015969
Crossref
Google Scholar
Hayes, A. F., Coutts, J. J. (2020). Use omega rather than Cronbach’s alpha for estimating reliability. But… Communication Methods and Measures, 14(1), 1‒24. https://doi.org/10.1080/19312458.2020.1718629
Crossref
Google Scholar
Henson, R. K. (2001). Understanding internal consistency reliability estimates: A conceptual primer on coefficient alpha. Measurement and Evaluation in Counseling and Development, 34(3), 177‒189. https://doi.org/10.1080/07481756.2002.12069034
Crossref
Google Scholar
Hoyt, W. T., Warbasse, R. E., Chu, E. Y. (2006). Construct validation in counseling psychology research. The Counseling Psychologist, 34(6), 769‒805. https://doi.org/10.1177/0011000006287389
Crossref
Google Scholar
Jolliffe, I. T., Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), artykuł 20150202. https://doi.org/10.1098/rsta.2015.0202
Crossref
Google Scholar
Kalkbrenner, M. T. (2023). Alpha, Omega, and H internal consistency reliability estimates: Reviewing these options and when to use them. Counseling Outcome Research and Evaluation, 14(1), 77‒88. https://doi.org/10.1080/21501378.2021.1940118
Crossref
Google Scholar
Kane, M. T. (2013). Validating the interpretations and uses of test scores. Journal of Educational Measurement, 50(1), 1‒73. https://doi.org/10.1111/jedm.12000
Crossref
Google Scholar
Leung, S. O. (2011). A comparison of psychometric properties and normality in 4-, 5-, 6-, and 11-point Likert scales. Journal of Social Service Research, 37(4), 412‒421. https://doi.org/10.1080/01488376.2011.580697
Crossref
Google Scholar
Li, H., Rosenthal, R., Rubin, D. B. (1996). Reliability of measurement in psychology: From Spearman-Brown to maximal reliability. Psychological Methods, 1(1), 98‒107. https://doi.org/10.1037/1082-989X.1.1.98
Crossref
Google Scholar
Lucke, J. F. (2005). The α and the ω of congeneric test theory: An extension of reliability and internal consistency to heterogeneous tests. Applied Psychological Measurement, 29(1), 65‒81. https://doi.org/10.1177/0146621604270882
Crossref
Google Scholar
Macey, W. H., Eldridge, L. D. (2006). National norms versus consortium data: What do they tell us. W: A. I. Kraut (red.), Getting action from organizational surveys: New concepts, technologies, and applications (s. 352‒376). Jossey-Bass. Google Scholar
Matell, M. S., Jacoby, J. (1972). Is there an optimal number of alternatives for Likert-scale items? Effects of testing time and scale properties. Journal of Applied Psychology, 56(6), 506‒509. https://doi.org/10.1037/h0033601
Crossref
Google Scholar
McCrae, R. R., Kurtz, J. E., Yamagata, S., Terracciano, A. (2011). Internal consistency, retest reliability, and their implications for personality scale validity. Personality and Social Psychology Review, 15(1), 28‒50. https://doi.org/10.1177/1088868310366253
Crossref
Google Scholar
McDonald, R. P. (2013). Test theory: A unified treatment. Psychology Press. https://doi.org/10.4324/9781410601087
Crossref
Google Scholar
McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here. Psychological Methods, 23(3), 412‒433. https://doi.org/10.1037/met0000144
Crossref
Google Scholar
Metsämuuronen, J. (2022). The effect of various simultaneous sources of mechanical error in the estimators of correlation causing deflation in reliability: Seeking the best options of correlation for deflation-corrected reliability. Behaviormetrika, 49(1), 91‒130. https://doi.org/10.1007/s41237-022-00158-y
Crossref
Google Scholar
Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach’s alpha for dichotomous and ordered rating scores. Quality & Quantity, 48(3), 1191‒1211. https://doi.org/10.1007/s11135-013-9829-1
Crossref
Google Scholar
Ponterotto, J. G., Ruckdeschel, D. E. (2007). An overview of coefficient alpha and a reliability matrix for estimating adequacy of internal consistency coefficients with psychological research measures. Perceptual and Motor Skills, 105(3), 997‒1014. https://doi.org/10.2466/pms.105.3.997-1014
Crossref
Google Scholar
Preston, C. C., Colman, A. M. (2000). Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences. Acta Psychologica, 104(1), 1‒15. https://doi.org/10.1016/S0001-6918(99)00050-5
Crossref
Google Scholar
Raykov, T., Marcoulides, G. A. (2011). Introduction to psychometric theory. Routledge. https://doi.org/10.4324/9780203841624
Crossref
Google Scholar
Revelle, W., Condon, D. M. (2019). Reliability from α to ω: A tutorial. Psychological Assessment, 31(12), 1395‒1411. https://doi.org/10.1037/pas0000754
Crossref
Google Scholar
Šerbetar, I., Sedlar, I. (2016). Assessing reliability of a multi-dimensional scale by coefficient alpha. Journal of Elementary Education, 9(1/2), 189‒196. Google Scholar
Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107‒120. https://doi.org/10.1007/s11336-008-9101-0
Crossref
Google Scholar
Sijtsma, K. (2020). Measurement Models for Psychological Attributes: Classical Test Theory, Factor Analysis, Item Response Theory, and Latent Class Models. CRC Press. https://doi.org/10.1201/9780429112447-2
Crossref
Google Scholar
Sijtsma, K., Pfadt, J. M. (2021). Part II: On the use, the misuse, and the very limited usefulness of Cronbach’s alpha: Discussing lower bounds and correlated errors. Psychometrika, 86(4), 843‒860. https://doi.org/10.1007/s11336-021-09789-8
Crossref
Google Scholar
Streiner, D. L. (2003). Starting at the beginning: an introduction to coefficient alpha and internal consistency. Journal of Personality Assessment, 80(1), 99‒103. https://doi.org/10.1207/S15327752JPA8001_18
Crossref
Google Scholar
Tabachnick, B. G., Fidell, L. S. (2007). Using multivariate statistics (wyd. 5). Allyn & Bacon. Google Scholar
Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1273‒1296. https://doi.org/10.1007/s11165-016-9602-2
Crossref
Google Scholar
Taherdoost, H. (2022). What is the best response scale for survey and questionnaire design; review of different lengths of rating scale / attitude scale / Likert scale. International Journal of Academic Research in Management, 8(1), 1‒10. Google Scholar
Tang, W., Cui, Y., Babenko, O. (2014). Internal consistency: Do we really know what it is and how to assess it. Journal of Psychology and Behavioral Science, 2(2), 205‒220. Google Scholar
Ten Berge, J. M., Sočan, G. (2004). The greatest lower bound to the reliability of a test and the hypothesis of unidimensionality. Psychometrika, 69(4), 613‒625. https://doi.org/10.1007/BF02289858
Crossref
Google Scholar
Thall, P. F., Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics, 46(3), 657‒671. https://doi.org/10.2307/2532086
Crossref
Google Scholar
Thigpen, N. N., Kappenman, E. S., Keil, A. (2017). Assessing the internal consistency of the event‐related potential: An example analysis. Psychophysiology, 54(1), 123‒138. https://doi.org/10.1111/psyp.12629
Crossref
Google Scholar
Thompson, B. (2002). Score reliability: Contemporary thinking on reliability issues (wyd. 1). Sage Publications, Inc. https://doi.org/10.4135/9781412985789.n1
Crossref
Google Scholar
Trizano-Hermosilla, I., Alvarado, J. M. (2016). Best alternatives to Cronbach's alpha reliability in realistic conditions: congeneric and asymmetrical measurements. Frontiers in Psychology, 7, artykuł 769. https://doi.org/10.3389/fpsyg.2016.00769
Crossref
Google Scholar
Vaske, J. J., Beaman, J., Sponarski, C. C. (2017). Rethinking internal consistency in Cronbach's alpha. Leisure Sciences, 39(2), 163‒173. https://doi.org/10.1080/01490400.2015.1127189
Crossref
Google Scholar
Vehkalahti, K., Puntanen, S., Tarkkonen, L. (2006). Estimation of reliability: a better alternative for Cronbach's alpha. Department of Mathematics and Statistics, University of Helsinki. Google Scholar
Zumbo, B. D., Chan, E. K. (2014). Validity and validation in social, behavioral, and health sciences. Social Indicators Research Series, Vol. 54. Springer. https://doi.org/10.1007/978-3-319-07794-9
Crossref
Google Scholar
Uniwersytet Papieski Jana Pawła II w Krakowie
https://orcid.org/0000-0001-5553-4016
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.