Jak czytać metaanalizy badań nad skutecznością i nie zabłądzić. Wprowadzenie dla osób praktykujących psychoterapię
Joachim Kowalski
Instytut Psychologii Polskiej Akademii Nauk, Pracownia Psychopatologii Eksperymentalnejhttps://orcid.org/0000-0001-6281-7401
Abstract
Cel: Celem artykułu jest zilustrowanie praktycznych zagadnień związanych z przygotowywaniem oraz interpretacją przeglądów systematycznych i metaanaliz dotyczących badań klinicznych nad skutecznością psychoterapii. Tekst pełni funkcję praktycznego przewodnika i mapy, które ułatwiają orientację w sposobie powstawania tych opracowań oraz pozwalają krytycznie oceniać ich wyniki.
Tezy: 1) Znaczenie przeglądów systematycznych i metaanaliz. Metaanalizy i przeglądy systematyczne są kluczowymi metodami syntezy danych w psychologii i stanowią podstawę decyzji klinicznych opartych na dowodach naukowych. W obszarze psychoterapii liczba publikowanych prac przeglądowych sięga setek rocznie. 2) Zróżnicowana jakość badań przeglądowych. Przeglądy różnią się jakością metodologiczną i poziomem ryzyka tendencyjności, co wpływa na pewność formułowanych wniosków oraz możliwość ich zastosowania w praktyce. 3) Etapy przygotowania i raportowania. Artykuł opisuje formalne kroki tworzenia przeglądów systematycznych i metaanaliz, w tym definiowanie pytania badawczego, znaczenie prerejestracji oraz stosowanie standardów raportowania. 4) Wskaźniki efektywności i pewności wyników. Omówiono najczęściej stosowane wskaźniki efektu (np. standaryzowane różnice średnich, iloraz szans, liczbę potrzebnych interwencji, procent remisji lub indeksy zmiany oparte na punktach odcięcia) oraz pewności co do uzyskanych wyników, jak miary tendencyjności i heterogeniczności. 5) Elementy graficzne i analizy dodatkowe stosowane w metaanalizach. Przedstawiono graficzne reprezentacje wyników metaanaliz oraz metody analityczne ukierunkowane na redukcję tendencyjności.
Konkluzje: Przeglądy systematyczne i metaanalizy stanowią fundament praktyki klinicznej bazującej na dowodach i odgrywają istotną rolę w formułowaniu zaleceń terapeutycznych w psychoterapii. Jednak ich interpretacja wymaga świadomości procesów stojących za ich powstawaniem oraz umiejętności krytycznej oceny jakości i ograniczeń tych prac.
Keywords:
metaanaliza, przegląd systematyczny, badania kliniczne, metapsychologiaReferences
Afonso, J., Ramirez-Campillo, R., Clemente, F. M., Büttner, F. C., Andrade, R. (2024). The perils of misinterpreting and misusing “publication bias” in meta-analyses: An education review on funnel plot-based methods. Sports Medicine, 54(2), 257–269. https://doi.org/10.1007/s40279-023-01927-9
Crossref
Google Scholar
American Psychiatric Association (2020). Development process for practice guidelines of the American Psychiatric Association – revised. https://www.psychiatry.org/ getmedia/0b96df17-66a7-4f49-8159-d6522615f047/APA-Guideline-Development-Process.pdf Google Scholar
American Psychological Association (b.d.). APA clinical practice guideline development. www.apa.org/about/offices/directorates/guidelines/clinical-practice. Google Scholar
Andersson, E., Aspvall, K., Schettini, G., Kraepelien, M., Särnholm, J., Wergeland, G. J., Öst, L. G. (2025). Efficacy of metacognitive interventions for psychiatric disorders: A systematic review and meta-analysis. Cognitive Behaviour Therapy, 54(2), 276–302. https://doi.org/10.1080/16506073.2024.2434920
Crossref
Google Scholar
Andrade, C. (2015). Understanding relative risk, odds ratio, and related terms: As simple as it can get. The Journal of Clinical Psychiatry, 76(7), 857–861. https://doi.org/10.4088/jcp.15f10150
Crossref
Google Scholar
Andrade, C. (2020). Understanding the basics of meta-analysis and how to read a forest plot: As simple as it gets. The Journal of Clinical Psychiatry, 81(5), artykuł 20f13698. https://doi.org/10.4088/JCP.20f13698
Crossref
Google Scholar
APA Presidential Task Force on Evidence-Based Practice. (2006). Evidence-based practice in psychology. The American Psychologist, 61(4), 271–285. https://doi.org/10.1037/0003-066x.61.4.271
Crossref
Google Scholar
Aromataris, E., Fernandez, R., Godfrey, C. M., Holly, C., Khalil, H., Tungpunkom, P. (2015). Summarizing systematic reviews: Methodological development, conduct and reporting of an umbrella review approach. JBI Evidence Implementation, 13(3), 132–140. https://doi.org/10.1097/xeb.0000000000000055
Crossref
Google Scholar
Baker, S. G., Kramer, B. S. (2002). The transitive fallacy for randomized trials: If A bests B and B bests C in separate trials, is A better than C? BMC Medical Research Methodology, 2, artykuł 13. https://doi.org/10.1186/1471-2288-2-13
Crossref
Google Scholar
Baker, T. B., McFall, R. M., Shoham, V. (2008). Current status and future prospects of clinical psychology: Toward a scientifically principled approach to mental and behavioral health care. Psychological Science in the Public Interest, 9(2), 67–103. https://doi.org/10.1111/j.1539-6053.2009.01036.x
Crossref
Google Scholar
Baker, W. L., Michael White, C., Cappelleri, J. C., Kluger, J., Coleman, C. I., From the Health Outcomes, Policy, and Economics (HOPE) Collaborative Group. (2009). Understanding heterogeneity in meta‐analysis: The role of meta‐regression. International Journal of Clinical Practice, 63(10), 1426–1434. https://doi.org/10.1111/j.1742-1241.2009.02168.x
Crossref
Google Scholar
Begg, C. B., Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50(4), 1088–1101.
Crossref
Google Scholar
Blease, C., Kelley, J. M., Trachsel, M. (2018). Informed consent in psychotherapy: Implications of evidence-based practice. Journal of Contemporary Psychotherapy, 48, 69–78. https://doi.org/10.1007/s10879-017-9372-9
Crossref
Google Scholar
Boot, W. R., Simons, D. J., Stothart, C., Stutts, C. (2013). The pervasive problem with placebos in psychology: Why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8(4), 445–454. https://doi.org/10.1177/1745691613491271
Crossref
Google Scholar
Borenstein, M., Higgins, J. P., Hedges, L. V., Rothstein, H. R. (2017). Basics of meta‐analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8(1), 5–18. https://doi.org/10.1002/jrsm.1230
Crossref
Google Scholar
Boutron, I., Page, M. J., Higgins, J. P. T., Altman, D. G., Lundh, A., Hróbjartsson, A. (2023). Chapter 7: Considering bias and conflicts of interest among the included studies. W: Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., Welch, V. A. (red.), Cochrane Handbook for Systematic Reviews of Interventions version 6.4. Cochrane. Pobrane 21 maja 2025 z: https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current/chapter-07 Google Scholar
Bowes, S. M., Ammirati, R. J., Costello, T. H., Basterfield, C., Lilienfeld, S. O. (2020). Cognitive biases, heuristics, and logical fallacies in clinical practice: A brief field guide for practicing clinicians and supervisors. Professional Psychology: Research and Practice, 51(5), 435–445. https://doi.org/10.1037/pro0000309
Crossref
Google Scholar
Buchman, D., Rosenbaum, D. (2024). Psychedelics in PeRil: The commercial determinants of health, financial entanglements and population health ethics. Public Health Ethics, 17(1–2), 24–39. https://doi.org/10.1093/phe/phae002
Crossref
Google Scholar
Burns, P. B., Rohrich, R. J., Chung, K. C. (2011). The levels of evidence and their role in evidence-based medicine. Plastic and Reconstructive Surgery, 128(1), 305–310. https://doi.org/10.1097/prs.0b013e318219c171
Crossref
Google Scholar
Caldwell, D. M., Ades, A. E., Higgins, J. P. T. (2005). Simultaneous comparison of multiple treatments: Combining direct and indirect evidence. BMJ, 331(7521), 897–900. https://doi.org/10.1136/bmj.331.7521.897
Crossref
Google Scholar
Chan, A. W., Hróbjartsson, A., Haahr, M. T., Gøtzsche, P. C., Altman, D. G. (2004). Empirical evidence for selective reporting of outcomes in randomized trials: Comparison of protocols to published articles. JAMA, 291(20), 2457–2465. https://doi.org/10.1001/jama.291.20.2457
Crossref
Google Scholar
Ciharova, M., Karyotaki, E., Miguel, C., Walsh, E., de Ponti, N., Amarnath, A., van Ballegooijen, W., Riper, H., Arroll, B., Cuijpers, P. (2024). Amount and frequency of psychotherapy as predictors of treatment outcome for adult depression: A meta-regression analysis. Journal of Affective Disorders, 359, 92–99. https://doi.org/10.1016/j.jad.2024.05.070
Crossref
Google Scholar
Cohn, L. D., Becker, B. J. (2003). How meta-analysis increases statistical power. Psychological Methods, 8(3), 243–253. https://doi.org/10.1037/1082-989x.8.3.243
Crossref
Google Scholar
Copay, A. G., Subach, B. R., Glassman, S. D., Polly Jr., D. W., Schuler, T. C. (2007). Understanding the minimum clinically important difference: A review of concepts and methods. The Spine Journal, 7(5), 541–546. https://doi.org/10.1016/j.spinee.2007.01.008
Crossref
Google Scholar
Cuijpers, P., Cristea, I. A. (2016). How to prove that your therapy is effective, even when it is not: A guideline. Epidemiology and Psychiatric Sciences, 25(5), 428–435. https://doi.org/10.1017/s2045796015000864
Crossref
Google Scholar
Cuijpers, P., Harrer, M., Miguel, C., Ciharova, M., Papola, D., Basic, D., Botella, C., Cristea, I., de Ponti, N., Donker, T., Driessen, E., Franco, P., Gómez-Gómez, I., Hamblen, J., Jiménez-Orenga, N., Karyotaki, E., Keshen, A., Linardon, J., Motrico, E., Matbouriahi, M., Panagiotopoulou, O. M., Pfund, R. A., Plessen, C. Y., Riper, H., Schnurr, P. P., Sijbrandij, M., Toffolo, M. B. J., Tong, L., van Ballegooijen, W., van der Ven, E., van Straten, A., Wang, Y., Furukawa, T. A. (2025). Cognitive behavior therapy for mental disorders in adults: A unified series of meta-analyses. JAMA Psychiatry, 82(6), 563–571. https://doi.org/10.1001/jamapsychiatry.2025.0482
Crossref
Google Scholar
Cuijpers, P., Karyotaki, E., de Wit, L., Ebert, D. D. (2020). The effects of fifteen evidence-supported therapies for adult depression: A meta-analytic review. Psychotherapy Research, 30(3), 279–293. https://doi.org/10.1080/10503307.2019.1649732
Crossref
Google Scholar
Cumming, G., Finch, S. (2005). Inference by eye: Confidence intervals and how to read pictures of data. American Psychologist, 60(2), 170–180. https://doi.org/10.1037/0003-066x.60.2.170
Crossref
Google Scholar
Davies, K. S. (2011). Formulating the evidence based practice question: A review of the frameworks. Evidence Based Library and Information Practice, 6(2), 75–80. https://doi.org/10.18438/B8WS5N
Crossref
Google Scholar
Davis, A. K., Barrett, F. S., May, D. G., Cosimano, M. P., Sepeda, N. D., Johnson, M. W., Finan, P. H., Griffiths, R. R. (2021). Effects of psilocybin-assisted therapy on major depressive disorder: A randomized clinical trial. JAMA Psychiatry, 78(5), 481–489. https://doi.org/10.1001/jamapsychiatry.2020.3285
Crossref
Google Scholar
Deeks, J. J., Higgins, J. P. T., Altman, D. G. (2023). Chapter 10: Analysing data and undertaking meta-analyses. W: J. P. T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, V. A. Welch (red.), Cochrane Handbook for Systematic Reviews of Interventions version 6.4. Cochrane. Pobrane 21 maja 2025 z: https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current/chapter-10 Google Scholar
Deleuran, D. H. K., Skov, O., Bo, S. (2024). Prolonged exposure for posttraumatic stress disorder in patients exhibiting psychotic symptoms: A scoping review. Clinical Psychology & Psychotherapy, 31(4), artykuł e3027. https://doi.org/10.1002/cpp.3027
Crossref
Google Scholar
Dozois, D. J. A., Mikail, S. F., Alden, L. E., Bieling, P. J., Bourgon, G., Clark, D. A., Drapeau, M., Gallson, D., Greenberg, L., Hunsley, J., Johnston, C. (2014). The CPA Presidential Task Force on Evidence-Based Practice of Psychological Treatments. Canadian Psychology/Psychologie canadienne, 55(3), 153–160. https://doi.org/10.1037/a0035767
Crossref
Google Scholar
Duval, S., Tweedie, R. (2000). Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463. https://doi.org/10.1111/j.0006-341x.2000.00455.x
Crossref
Google Scholar
Egger, M., Smith, G. D., Schneider, M., Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629
Crossref
Google Scholar
Evans, D. (2003). Hierarchy of evidence: A framework for ranking evidence evaluating healthcare interventions. Journal of Clinical Nursing, 12(1), 77–84. https://doi.org/10.1046/j.1365-2702.2003.00662.x
Crossref
Google Scholar
Furukawa, T. A. (1999). From effect size into number needed to treat. The Lancet, 353(9165), artykuł 1680. https://doi.org/10.1016/s0140-6736(99)01163-0
Crossref
Google Scholar
Furukawa, T. A., Leucht, S. (2011). How to obtain NNT from Cohen’s d: Comparison of two methods. PloS One, 6(4), artykuł e19070. https://doi.org/10.1371/journal.pone.0019070
Crossref
Google Scholar
Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5(10), 3–8. https://doi.org/10.3102/0013189X005010003
Crossref
Google Scholar
Grubaugh, A. L., Veronee, K., Ellis, C., Brown, W., Knapp, R. G. (2017). Feasibility and efficacy of prolonged exposure for PTSD among individuals with a psychotic spectrum disorder. Frontiers in Psychology, 8, artykuł 977. https://doi.org/10.3389/fpsyg.2017.00977
Crossref
Google Scholar
Gyani, A., Shafran, R., Layard, R., Clark, D. M. (2013). Enhancing recovery rates: Lessons from year one of IAPT. Behaviour Research and Therapy, 51(9), 597–606. https://doi.org/10.1016/j.brat.2013.06.004
Crossref
Google Scholar
Gyani, A., Shafran, R., Myles, P., Rose, S. (2014). The gap between science and practice: How therapists make their clinical decisions. Behavior Therapy, 45(2), 199–211. https://doi.org/10.1016/j.beth.2013.10.004
Crossref
Google Scholar
Hannan, C., Lambert, M. J., Harmon, C., Nielsen, S. L., Smart, D. W., Shimokawa, K., Sutton, S. W. (2005). A lab test and algorithms for identifying clients at risk for treatment failure. Journal of Clinical Psychology, 61(2), 155–163. https://doi.org/10.1002/jclp.20108
Crossref
Google Scholar
Harrer, M., Cuijpers, P., Schuurmans, L. K., Kaiser, T., Buntrock, C., van Straten, A., Ebert, D. (2023). Evaluation of randomized controlled trials: A primer and tutorial for mental health researchers. Trials, 24(1), artykuł 562. https://doi.org/10.1186/s13063-023-07596-3
Crossref
Google Scholar
Hedges, L. V. (2025). Effect sizes for experimental research. British Journal of Mathematical and Statistical Psychology. https://doi.org/10.1111/bmsp.12389
Crossref
Google Scholar
Higgins, J. P., Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539–1558. https://doi.org/10.1002/sim.1186
Crossref
Google Scholar
Higgins, J. P., Thompson, S. G., Deeks, J. J., Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557
Crossref
Google Scholar
Higgins, J. P. T., Savović, J., Page, M. J., Elbers, R. G., Sterne, J. A. C. (b.d.). Chapter 8: Assessing risk of bias in a randomized trial. W: J. P. T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, V. A. Welch (red.), Cochrane Handbook for Systematic Reviews of Interventions version 6.4. Cochrane. Pobrane 21 maja 2025 z: https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current/chapter-08 Google Scholar
Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., Welch, V. A. (red.). (2024). Cochrane Handbook for Systematic Reviews of Interventions version 6.5. Pobrane 21 maja 2025. z: www.training.cochrane.org/handbook. Google Scholar
Hutton, B., Salanti, G., Caldwell, D. M., Chaimani, A., Schmid, C. H., Cameron, C., Ioannidis, J. P., Straus, S., Thorlund, K., Jansen, J. P., Mulrow, C., Catalá-López, F., Gøtzsche, P. C., Dickersin, K., Boutron, I., Altman, D. G., Moher, D. (2015). The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Annals of Internal Medicine, 162(11), 777–784. https://doi.org/10.7326/m14-2385
Crossref
Google Scholar
IntHout, J., Ioannidis, J. P. A., Rovers, M. M., Goeman, J. J. (2016). Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open, 6, artykuł e010247. https://doi.org/10.1136/bmjopen-2015-010247
Crossref
Google Scholar
Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2(8), artykuł e124. https://doi.org/10.1371/journal.pmed.0020124
Crossref
Google Scholar
Jacobson, N. S., Truax, P. (1991). Clinical significance: A statistical approach to denning meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychologv, 59(1), 12–19. https://doi.org/10.1037//0022-006x.59.1.12
Crossref
Google Scholar
JASP Team (2024). JASP (Version 0.18.3) [oprogramowanie komputerowe]. Google Scholar
Jobst, A., Brakemeier, E. -L., Buchheim, A., Caspar, F., Cuijpers, P., Ebmeier, K. P., Falkai, P., Jan van der Gaag, R., Gaebel, W., Herpertz, S., Kurimay, T., Sabaß, L., Schnell, K., Schramm, E., Torrent, C., Wasserman, D., Wiersma, J., Padberg, F. (2016). European Psychiatric Association Guidance on psychotherapy in chronic depression across Europe. European Psychiatry, 33(1), 18–36. https://doi.org/10.1016/j.eurpsy.2015.12.003
Crossref
Google Scholar
Kirsch, I. (2005). Placebo psychotherapy: Synonym or oxymoron? Journal of Clinical Psychology, 61(7), 791–803. https://doi.org/10.1002/jclp.20126
Crossref
Google Scholar
Kowalski, J. (2024). Possible errors in a meta-analysis on the efficacy of psychodynamic therapy in social anxiety disorder (Qiqi Zhang et al., 2022). Psychiatry Research, 342, artykuł 116174. https://doi.org/10.1016/j.psychres.2024.116174
Crossref
Google Scholar
Kowalski, J., Blaut, A., Dragan, M., Farley, D., Pankowski, D., Sanna, K., Śliwerski, A., Wiśniowska, J. (2024). Systematyczny narracyjny przegląd metaanaliz badań nad skutecznością psychoterapii poznawczo-behawioralnej i zaleceń terapeutycznych opublikowanych między 2010 a 2023. Polskie Towarzystwo Terapii Poznawczej i Behawioralnej. Google Scholar
Kowalski, J., Elżanowski, A., Śliwerski, A. (2023). A review of selected psychotherapies for PTSD, their efficacy and treatment guidelines in adults. Psychiatria Polska, 58(2), 315–328. https://doi.org/10.12740/pp/onlinefirst/157105
Crossref
Google Scholar
Kraus, D. R., Castonguay, L., Boswell, J. F., Nordberg, S. S., Hayes, J. A. (2011). Therapist effectiveness: Implications for accountability and patient care. Psychotherapy Research, 21(3), 267–276. https://doi.org/10.1080/10503307.2011.563249
Crossref
Google Scholar
Kvarven, A., Strømland, E., Johannesson, M. (2020). Comparing meta-analyses and preregistered multiple-laboratory replication projects. Nature Human Behaviour, 4(4), 423–434. https://doi.org/10.1038/s41562-019-0787-z
Crossref
Google Scholar
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, artykuł 863. https://doi.org/10.3389/fpsyg.2013.00863
Crossref
Google Scholar
Lau, J., Ioannidis, J. P., Terrin, N., Schmid, C. H., Olkin, I. (2006). The case of the misleading funnel plot. BMJ, 333(7568), 597–600. https://doi.org/10.1136/bmj.333.7568.597
Crossref
Google Scholar
Lemarchand, C., Chopin, R., Paul, M., Braillon, A., Cosgrove, L., Cristea, I., Fried, E. I., Turner, E. H., Naudet, F. (2024). Fragile promise of psychedelics in psychiatry. BMJ, 387, artykuł e080391. https://doi.org/10.1136/bmj-2024-080391
Crossref
Google Scholar
Leon, A. C. (2011). Comparative effectiveness clinical trials in psychiatry: Superiority, noninferiority, and the role of active comparators. Journal of Clinical Psychiatry, 72(10), 1344–1349. https://doi.org/10.4088/jcp.10m06089whi
Crossref
Google Scholar
Levi, O., Bar‐Haim, Y., Kreiss, Y., Fruchter, E. (2016). Cognitive–behavioural therapy and psychodynamic psychotherapy in the treatment of combat‐related post‐traumatic stress disorder: A comparative effectiveness study. Clinical Psychology & Psychotherapy, 23(4), 298–307. https://doi.org/10.1002/cpp.1969
Crossref
Google Scholar
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. Journal of Clinical Epidemiology, 62(10), 1–34. https://doi.org/10.1016/j.jclinepi.2009.06.006
Crossref
Google Scholar
Lilienfeld, S. O., Ritschel, L. A., Lynn, S. J., Cautin, R. L., Latzman, R. D. (2014). Why ineffective psychotherapies appear to work: A taxonomy of causes of spurious therapeutic effectiveness. Perspectives on Psychological Science, 9(4), 355–387. https://doi.org/10.1177/1745691614535216
Crossref
Google Scholar
Magnusson, K. (2025). Interpreting Cohen’s d effect size: An interactive visualization (Version 2.6.0). R Psychologist. Pobrane 21 maja 2025 z: https://rpsychologist.com/cohend Google Scholar
Mallard Swanson, K., Song, J., Beristianos, M., Aajmain, S., Lane, J. E. M., Landy, M. S. H., Suvak, M. K., Shields, N., Monson, C. M., Stirman, S. W. (2021). A glimpse into the “black box”: Which elements of consultation in an EBP are associated with client symptom change and therapist fidelity? Implementation Research and Practice, 2. https://doi.org/10.1177/26334895211051791
Crossref
Google Scholar
McAleavey, A. A. (2024). When (not) to rely on the reliable change index: A critical appraisal and alternatives to consider in clinical psychology. Clinical Psychology: Science and Practice, 31(3), 351–366. https://doi.org/10.1037/cps0000203
Crossref
Google Scholar
Methley, A. M., Campbell, S., Chew-Graham, C., McNally, R., Cheraghi-Sohi, S. (2014). PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Services Research, 14(1), artykuł 579. https://doi.org/10.1186/s12913-014-0579-0
Crossref
Google Scholar
Michopoulos, I., Furukawa, T. A., Noma, H., Kishimoto, S., Onishi, A., Ostinelli, E. G., Ciharova, M., Miguel, C., Karyotaki, E., Cuijpers, P. (2021). Different control conditions can produce different effect estimates in psychotherapy trials for depression. Journal of Clinical Epidemiology, 132, 59–70. https://doi.org/10.1016/j.jclinepi.2020.12.012
Crossref
Google Scholar
Miguel, C., Harrer, M., Karyotaki, E., Plessen, C. Y., Ciharova, M., Furukawa, T. A., Cristea, I. A., Cuijpers, P. (2025). Self-reports vs clinician ratings of efficacies of psychotherapies for depression: A meta-analysis of randomized trials. Epidemiology and Psychiatric Sciences, 34, artykuł e15. https://doi.org/10.1017/s2045796025000095
Crossref
Google Scholar
Moritz, S., Nestoriuc, Y., Rief, W., Klein, J. P., Jelinek, L., Peth, J. (2019). It can’t hurt, right? Adverse effects of psychotherapy in patients with depression. European Archives of Psychiatry and Clinical Neuroscience, 269(5), 577–586. https://doi.org/10.1007/s00406-018-0931-1
Crossref
Google Scholar
Munder, T., Brütsch, O., Leonhart, R., Gerger, H., Barth, J. (2013). Researcher allegiance in psychotherapy outcome research: An overview of reviews. Clinical Psychology Review, 33(4), 501–511. https://doi.org/10.1016/j.cpr.2013.02.002
Crossref
Google Scholar
National Institute for Health and Care Excellence (2014). Developing NICE guidelines: The manual. Pobrane 21 maja 2025 z: https://www.nice.org.uk/process/pmg20/chapter/introduction Google Scholar
Nosek, B. A., Ebersole, C. R., DeHaven, A. C., Mellor, D. T. (2018). The preregistration revolution. Proceedings of the National Academy of Sciences, 115(11), 2600–2606. https://doi.org/10.1073/pnas.1708274114
Crossref
Google Scholar
Nosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Dreber, A., Fidler, F., Hilgard, J., Kline Struhl, M., Nuijten, M. B., Rohrer, J. M., Romero, F., Scheel, A. M., Scherer, L. D., Schönbrodt, F. D., Vazire, S. (2022). Replicability, robustness, and reproducibility in psychological science. Annual Review of Psychology, 73(1), 719–748. https://doi.org/10.1146/annurev-psych-020821-114157
Crossref
Google Scholar
Nye, A., Delgadillo, J., Barkham, M. (2023). Efficacy of personalized psychological interventions: A systematic review and meta-analysis. Journal of Consulting and Clinical Psychology, 91(7), 389–397. https://doi.org/10.1037/ccp0000820
Crossref
Google Scholar
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), artykuł aac4716. https://doi.org/10.1126/science.aac4716
Crossref
Google Scholar
Page, M. J., Sterne, J. A. C., Boutron, I., Hróbjartsson, A., Kirkham, J. J., Li, T., Lundh, A., Mayo-Wilson, E., McKenzie, J. E., Stewart, L. A., Sutton, A. J., Bero, L., Dunn, A. G., Dwan, K., Elbers, R. G., Kanukula, R., Meerpohl, J. J., Turner, E. H., Higgins, J. P. T. (2023). ROB-ME: A tool for assessing risk of bias due to missing evidence in systematic reviews with meta-analysis. BMJ, 383, artykuł e076754. https://doi.org/10.1136/bmj-2023-076754
Crossref
Google Scholar
Philips, B., Falkenström, F. (2021). What research evidence is valid for psychotherapy research? Frontiers in Psychiatry, 11, artykuł 625380. https://doi.org/10.3389/fpsyt.2020.625380
Crossref
Google Scholar
Riehm, K. E., Azar, M., Thombs, B. D. (2015). Transparency of outcome reporting and trial registration of randomized controlled trials in top psychosomatic and behavioral health journals: A 5-year follow-up. Journal of Psychosomatic Research, 79(1), 1–12. https://doi.org/10.1016/j.jpsychores.2015.04.010
Crossref
Google Scholar
Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological bulletin, 86(3), 638–641. https://doi.org/10.1037/0033-2909.86.3.638
Crossref
Google Scholar
Rothstein, H. R., Sutton, A. J., Borenstein, M. (red.). (2005). Publication bias in meta‐analysis: Prevention, assessment and adjustments. John Wiley & Sons.
Crossref
Google Scholar
Sandoval-Lentisco, A., Tortajada, M., López-Nicolás, R., López-López, J. A., Wagenmakers, E. J., Sánchez-Meca, J., Hardwicke, T. E. (2025). Preregistration of psychology meta-analyses: A cross-sectional study of prevalence and practice. Advances in Methods and Practices in Psychological Science, 8(1), artykuł 25152459241300113. https://doi.org/10.1177/25152459241300113
Crossref
Google Scholar
Salanti, G. (2012). Indirect and mixed‐treatment comparison, network, or multiple‐treatments meta‐analysis: Many names, many benefits, many concerns for the next generation evidence synthesis tool. Research Synthesis Methods, 3(2), 80–97. https://doi.org/10.1002/jrsm.1037
Crossref
Google Scholar
Schmidt, C. O., Kohlmann, T. (2008). When to use the odds ratio or the relative risk? International Journal of Public Health, 53(3), 165–167. https://doi.org/10.1007/s00038-008-7068-3
Crossref
Google Scholar
Schünemann, H. J., Higgins, J. P. T., Vist, G. E., Glasziou, P., Akl, E. A., Skoetz, N., Guyatt, G. H. (2024). Chapter 14: Completing ‘Summary of findings’ tables and grading the certainty of the evidence. W: J. P. T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, V. A. Welch (red.), Cochrane Handbook for Systematic Reviews of Interventions version 6.5.1. Cochrane. Pobrane 21 maja 2025 z: https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current/chapter-14 Google Scholar
Sedgwick, P. (2015a). How to read a forest plot in a meta-analysis. BMJ, 351, artykuł h4028 https://doi.org/10.1136/bmj.h4028
Crossref
Google Scholar
Sedgwick, P. (2015b). What is publication bias in a meta-analysis?. BMJ, 351, artykuł h4419. https://doi.org/10.1136/bmj.h4419
Crossref
Google Scholar
Sedgwick, P., Marston, L. (2015). How to read a funnel plot in a meta-analysis. BMJ, 351, artykuł h4718. https://doi.org/10.1136/bmj.h4718
Crossref
Google Scholar
Seegan, P. L., Miller, L., Young, A. S., Parrish, C., Cullen, B., Reynolds, E. K. (2023). Enhancing quality of care through evidence-based practice: Training and supervision experiences. American Journal of Psychotherapy, 76(3), 100–106. https://doi.org/10.1176/appi.psychotherapy.20220015
Crossref
Google Scholar
Shadish, W. R., Lecy, J. D. (2015). The meta‐analytic big bang. Research Synthesis Methods, 6(3), 246–264. https://doi.org/10.1002/jrsm.1132
Crossref
Google Scholar
Shea, B. J., Grimshaw, J. M., Wells, G. A., Boers, M., Andersson, N., Hamel, C., Porter, A. C., Tugwell, P., Moher, D., Bouter, L. M. (2007). Development of AMSTAR: A measurement tool to assess the methodological quality of systematic reviews. BMC Medical Research Methodology, 7, artykuł 10. https://doi.org/10.1186/1471-2288-7-10
Crossref
Google Scholar
Shea, B. J., Bouter, L. M., Peterson, J., Boers, M., Andersson, N., Ortiz, Z., Ramsay, T., Bai, A., Shukla, V. K., Grimshaw, J. M. (2007). External validation of a measurement tool to assess systematic reviews (AMSTAR). PloS One, 2(12), artykuł e1350. https://doi.org/10.1371/journal.pone.0001350
Crossref
Google Scholar
Shea, B. J., Hamel, C., Wells, G. A., Bouter, L. M., Kristjansson, E., Grimshaw, J., Henry, D. A., Boers, M. (2009). AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. Journal of Clinical Epidemiology, 62(10), 1013–1020. https://doi.org/10.1016/j.jclinepi.2008.10.009
Crossref
Google Scholar
Shea, B. J., Reeves, B. C., Wells, G., Thuku, M., Hamel, C., Moran, J., Moher, D., Tugwell, P., Welch, V., Kristjansson, E., Henry, D. A. (2017). AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ, 358, artykuł j4008. https://doi.org/10.1136/bmj.j4008
Crossref
Google Scholar
Simmonds, M. (2015). Quantifying the risk of error when interpreting funnel plots. Systematic Reviews, 4, artykuł 24. https://doi.org/10.1186/s13643-015-0004-8
Crossref
Google Scholar
Sleight, P. (2000). Debate: Subgroup analyses in clinical trials: Fun to look at-but don’t believe them! Trials, 1(1), 25–27. https://doi.org/10.1186/cvm-1-1-025
Crossref
Google Scholar
Smith, M. L., Glass, G. V. (1977). Meta-analysis of psychotherapy outcome studies. American Psychologist, 32(9), 752–760. https://doi.org/10.1037/0003-066X.32.9.752
Crossref
Google Scholar
Spring, B. (2007). Evidence‐based practice in clinical psychology: What it is, why it matters; what you need to know. Journal of Clinical Psychology, 63(7), 611–631. https://doi.org/10.1002/jclp.20373
Crossref
Google Scholar
Sterne, J. A. C., Egger, M. (2001). Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. Journal of Clinical Epidemiology, 54(10), 1046–1055. https://doi.org/10.1016/s0895-4356(01)00377-8
Crossref
Google Scholar
Sterne, J. A. C., Becker, B. J., Egger, M. (2005). The funnel plot. W: H. R. Rothstein, A. J. Sutton, M. Borenstein, M. (red.), Publication bias in meta‐analysis: Prevention, assessment and adjustments (s. 73–98). Wiley. https://doi.org/10.1002/0470870168.ch5
Crossref
Google Scholar
Sterne, J. A. C., Hernán, M. A., Reeves, B. C., Savović, J., Berkman, N. D., Viswanathan, M., Henry, D., Altman, D. G., Ansari, M. T., Boutron, I., Carpenter, J. R., Chan, A. -W., Churchill, R., Deeks, J. J., Hróbjartsson, A., Kirkham, J., Jüni, P., Loke, Y. K., Pigott, T. D., Ramsay, C. R., Rothstein, H. R., Sandhu, L., Santaguida, P. L., Schünemann, H. J., Shea, B., Shrier, I., Tugwell, P., Turner, L., Valentine, J. C., Waddington, H., Waters, E., Wells, G. A., Whiting, P. F., Higgins, J. P. T. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ, 355, artykuł i4919. https://doi.org/10.1136/bmj.i4919
Crossref
Google Scholar
Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H. -Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., McAleenan, A., Reeves, B. C., Shepperd, S., Shrier, I., Stewart, L. A., Tilling, K., White, I. R., Whiting, P. F., Higgins, J. P. T. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, 366, artykuł l4898. https://doi.org/10.1136/bmj.l4898
Crossref
Google Scholar
Sterne, J. A. C., Hernan, M. A., McAleenan, A., Reeves, B. C., Higgins, J. P. T. (2023). Chapter 25: Assessing risk of bias in a non-randomized study. W: J. P. T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, V. A. Welch (red.), Cochrane Handbook for Systematic Reviews of Interventions version 6.4. Cochrane. Pobrane 21 maja 2025 z: www.training.cochrane.org/handbook Google Scholar
Stoll, M., Mancini, A., Hubenschmid, L., Dreimüller, N., König, J., Cuijpers, P., Barth, J., Lieb, K. (2020). Discrepancies from registered protocols and spin occurred frequently in randomized psychotherapy trials—a meta-epidemiologic study. Journal of Clinical Epidemiology, 128, 49–56. https://doi.org/10.1016/j.jclinepi.2020.08.013
Crossref
Google Scholar
Tolin, D. F., McKay, D., Forman, E. M., Klonsky, E. D., Thombs, B. D. (2015). Empirically supported treatment: Recommendations for a new model. Clinical Psychology: Science and Practice, 22(4), 317–338. https://doi.org/10.1037/h0101729
Crossref
Google Scholar
Tolin, D. F., Grasso, D., Boness, C. L., Beck, J. G., Keane, T. M., Leichsenring, F., Olatunji, B. O., Otto, M. W., Weinand, J. (2025). A proposed definition of psychological treatment and its relation to empirically supported treatments. Clinical Psychology: Science and Practice, 32(3), 213–225. https://doi.org/10.1037/cps0000220
Crossref
Google Scholar
van Minnen, A., Zoellner, L. A., Harned, M. S., Mills, K. (2015). Changes in comorbid conditions after prolonged exposure for PTSD: A literature review. Current Psychiatry Reports, 17(3), artykuł 549. https://doi.org/10.1007/s11920-015-0549-1
Crossref
Google Scholar
Walfish, S., McAlister, B., O’Donnell, P., Lambert, M. J. (2012). An investigation of self-assessment bias in mental health providers. Psychological Reports, 110(2), 639–644. https://doi.org/10.2466/02.07.17.pr0.110.2.639-644
Crossref
Google Scholar
Watts, S. E., Turnell, A., Kladnitski, N., Newby, J. M., Andrews, G. (2015). Treatment-as-usual (TAU) is anything but usual: A meta-analysis of CBT versus TAU for anxiety and depression. Journal of Affective Disorders, 175, 152–167. https://doi.org/10.1016/j.jad.2014.12.025
Crossref
Google Scholar
Whiting, P., Savović, J., Higgins, J. P., Caldwell, D. M., Reeves, B. C., Shea, B., Davies, P., Kleijnen, J., Churchill, R., ROBIS group (2016). ROBIS: A new tool to assess risk of bias in systematic reviews was developed. Journal of Clinical Epidemiology, 69, 225–234. https://doi.org/10.1016/j.jclinepi.2015.06.005
Crossref
Google Scholar
Instytut Psychologii Polskiej Akademii Nauk, Pracownia Psychopatologii Eksperymentalnej
https://orcid.org/0000-0001-6281-7401
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.