Introduction to Causal Inference for Psychologists: Testable and Non-Testable Causal and Statistical Assumptions
Borysław Paulewicz
Jagiellonian University, Institute of Psychologyhttps://orcid.org/0000-0002-1270-2988
Abstract
The main goal of basic research is to answer causal questions. Generally, only the statistical part of this process tends to proceed in a partially formal way and according to clearly defined rules. At the same time, the causal relations are often treated informally or implicitly in a way that is prone to difficult-to-detect errors. This introduction aims to show psychology researchers some of the great benefits of approaching causal issues using a formal theory of causal inference. In this part, I discuss the non-obvious status and role of causal and statistical assumptions in causal inference. After covering, in a simple setting, the general shape of inference from causal assumptions, statistical assumptions, and data to causal effects, I outline, from a contemporary perspective, the limits of applicability of the general linear model. Then, I introduce the formal part of Pearl’s theory that relies on graphs. Using these tools, I show how one can analyze and interpret the results of an experiment on short-term memory search, and I discuss the back-door and front-door adjustments. To present the mathematical part of the theory in an accessible way without overly simplifying it, I illustrate some issues by using simulations written in R.
Keywords:
causality, causal inference, causal calculus, research methods, metatheory, statistical inference, Bayesian inferenceReferences
Bareinboim, E., Correa, J. D., Ibeling, D., & Icard, T. (2022). On Pearl’s hierarchy and the foundations of causal inference. In R. Dechter, J. Halpern, & H. Geffner (Eds.), Probabilistic and causal inference: The works of Judea Pearl (pp. 507–556). ACM Books.
Crossref
Google Scholar
Bareinboim, E., & Pearl, J. (2016). Causal inference and the data-fusion problem. Proceedings of the National Academy of Sciences, 113(27), 7345–7352. https://doi.org/10.1073/pnas.1510507113
Crossref
Google Scholar
Bareinboim, E., Tian, J., & Pearl, J. (2022). Recovering from selection bias in causal and statistical inference. In R. Dechter, J. Halpern, & H. Geffner (Eds.), Probabilistic and causal inference: The works of Judea Pearl (pp. 433–450). ACM Books.
Crossref
Google Scholar
Bedyńska, S., Książek, M., & Cypriańska, M. (2012). Statystyczny drogowskaz [A statistical signpost]. Wydawnictwo Akademickie Sedno. Google Scholar
Berkson, J. (1946). Limitations of the application of fourfold table analysis to hospital data. Biometrics Bulletin, 2(3), 47–53. https://doi.org/10.2307/3002000
Crossref
Google Scholar
Blalock, H. M. (2018). Causal inferences in nonexperimental research. UNC Press Books. Google Scholar
Bollen, K. A. (1989). Structural equations with latent variables (T. 210). John Wiley & Sons.
Crossref
Google Scholar
Borsboom, D. (2005). Measuring the mind: Conceptual issues in contemporary psychometrics. Cambridge University Press.
Crossref
Google Scholar
Brzeziński, J. (2022). Metodologia badań psychologicznych [Methodology of psychology research]. Wydawnictwo Naukowe PWN. Google Scholar
Chater, N., & Oaksford, M. (1999). Ten years of the rational analysis of cognition. Trends in Cognitive Sciences, 3(2), 57–65. https://doi.org/10.1016/s1364-6613(98)01273-x
Crossref
Google Scholar
Cinelli, C., Forney, A., & Pearl, J. (2021). A crash course in good and bad controls. Sociological Methods & Research. https://doi.org/10.1177/00491241221099552
Crossref
Google Scholar
Duncan, O. D. (2014). Introduction to structural equation models. Elsevier. Google Scholar
Field, A. P., & Wilcox, R. R. (2017). Robust statistical methods: A primer for clinical psychology and experimental psychopathology researchers. Behaviour Research and Therapy, 98, 19–38. https://doi.org/10.1016/j.brat.2017.05.013
Crossref
Google Scholar
Galles, D., & Pearl, J. (1998). An axiomatic characterization of causal counterfactuals. Foundations of Science, 3(1), 151–182. https://doi.org/10.1023/A:1009602825894
Crossref
Google Scholar
Greenland, S. (2022). The causal foundations of applied probability and statistics. In R. Dechter, J. Halpern, & H. Geffner (Eds.), Probabilistic and causal inference: The works of Judea Pearl (pp. 605–624). ACM Books.
Crossref
Google Scholar
Hoyle, R. H. (2012). Handbook of structural equation modeling. Guilford Press. Google Scholar
Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Publications. Google Scholar
Levy, J., Pashler, H., & Boer, E. (2006). Central interference in driving: Is there any stopping the psychological refractory period? Psychological Science, 17(3), 228–235. https://doi.org/10.1111/j.1467-9280.2006.01690.x
Crossref
Google Scholar
Liddell, T. M., & Kruschke, J. K. (2018). Analyzing ordinal data with metric models: What could possibly go wrong? Journal of Experimental Social Psychology, 79, 328–348. https://doi.org/10.1016/j.jesp.2018.08.009
Crossref
Google Scholar
McElreath, R. (2020). Statistical rethinking: A bayesian course with examples in R and Stan. Chapman and Hall/CRC.
Crossref
Google Scholar
Millsap, R. E. (2012). Statistical approaches to measurement invariance. Routledge.
Crossref
Google Scholar
Mohan, K., Pearl, J., & Tian, J. (2013). Graphical models for inference with missing data. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing System, 26 (NIPS-2013) (pp. 1277–1285). Curran Associates, Inc. Google Scholar
Paulewicz, B., & Blaut, A. (2022). The general causal cumulative model of ordinal response. PsyArXiv. https://doi.org/10.31234/osf.io/e7a3x
Crossref
Google Scholar
Paulewicz, B., Chuderski, A., & Nęcka, E. (2007). Insight problem solving, fluid intelligence, and executive control: A structural equation modeling approach. In S. Vosniadou, D. Kayser, & A. Protopapas (Eds.), Proceedings of the European Cognitive Science Conference 2007 (pp. 586–591). Psychology Press. Google Scholar
Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge University Press. Google Scholar
Pearl, J. (2012). The causal mediation formula – a guide to the assessment of pathways and mechanisms. Prevention Science, 13(4), 426–436. https://doi.org/10.1007/s11121-011-0270-1
Crossref
Google Scholar
Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. John Wiley & Sons. Google Scholar
Pearl, J., & Mackenzie, D. (2021). Przyczyny i skutki. Rewolucyjna nauka wnioskowania przyczynowego. Copernicus Center Press. Google Scholar
R Core Team. (2022). R: A language and environment for statistical computing [Computer software manual]. Vienna. https://www.R-project.org/ Google Scholar
Rohrer, J. M., Hu¨nermund, P., Arslan, R. C., & Elson, M. (2022). That’s a lot to PROCESS! Pitfalls of popular path models. Advances in Methods and Practices in Psychological Science, 5(2). https://doi.org/10.1177/25152459221095827
Crossref
Google Scholar
Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 10 (469), 322–331. https://doi.org/10.1198/016214504000001880
Crossref
Google Scholar
Saville, D. J., & Wood, G. R. (2012). Statistical methods: The geometric approach. Springer Science & Business Media. Google Scholar
Shpitser, I., & Pearl, J. (2008). Complete identification methods for the causal hierarchy. Journal of Machine Learning Research, 9, 1941–1979. https://doi.org/10.5555/1390681.1442797 Google Scholar
Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57(4), 421–457. https://www.jstor.org/stable/27828738 Google Scholar
Sternberg, S. (2001). Separate modifiability, mental modules, and the use of pure and composite measures to reveal them. Acta Psychologica, 106(1), 147–246. https://doi.org/10.1016/s0001-6918(00)00045-7
Crossref
Google Scholar
Townsend, J. T., &Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. Cambridge University Press. Google Scholar
Van Bork, R., Rhemtulla, M., Sijtsma, K., & Borsboom, D. (2022). A causal theory of error scores. Psychological Methods. https://doi.org/10.1037/met0000521
Crossref
Google Scholar
Verma, T. S., & Pearl, J. (2022). Equivalence and synthesis of causal models. In R. Dechter, J. Halpern, & H. Geffner (red.), Probabilistic and causal inference: The works of Judea Pearl (pp. 221–236). ACM Books.
Crossref
Google Scholar
Wilcox, R. R. (2011). Introduction to robust estimation and hypothesis testing. Academic Press.
Crossref
Google Scholar
Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557–585. Google Scholar
Jagiellonian University, Institute of Psychology
https://orcid.org/0000-0002-1270-2988
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.