Strategie szacowania miejsca liczb na osi u dzieci z dyskalkulią i typowo rozwijających się
Małgorzata Gut
Uniwersytet Mikołaja Kopernika w Toruniuhttps://orcid.org/0000-0001-6540-7192
Łukasz Goraczewski
2Bug Bomb Games Studio w ToruniuKarolina Finc
Uniwersytet Mikołaja Kopernika w Toruniuhttps://orcid.org/0000-0002-0157-030X
Jacek Matulewski
Uniwersytet Mikołaja Kopernika w Toruniuhttps://orcid.org/0000-0002-1283-6767
Anna Walerzak-Więckowska
Uniwersytet GdańskiWłodzisław Duch
Uniwersytet Mikołaja Kopernika w Toruniuhttps://orcid.org/0000-0001-7882-4729
Abstrakt
Cel
Celem badań była ocena wpływu deficytów poznawczych obecnych w specyficznym zaburzeniu w uczeniu się matematyki, na operowanie mentalną osią liczbową przy użyciu jednocyfrowych liczb prezentowanych w formacie symbolicznym i niesymbolicznym.
Metoda
Zbadano zdolność szacowania miejsca liczb na osi (ang. Number Line Estimation, NLE) u 20 dzieci z zaburzeniami w zakresie nauki matematyki (mathematical learning disabilities, MLD) i 27 ich typowo rozwijających się rówieśników (typically developing, TD). Wykorzystano w tym celu zadanie szacowania miejsca liczb na osi dla liczb z zakresu 1–9 przedstawianych w formacie symbolicznym i niesymbolicznym.
Wyniki
W przypadku wszystkich dzieci większą wartość błędu szacowania uzyskano dla liczb ze środka osi liczbowej, aczkolwiek efekt był bardziej wyraźny w grupie z zaburzeniami. Co więcej, dzieci z obu grup w podobnym stopniu przeszacowywały, zaś różniły się pod względem niedoszacowywania miejsca liczb. Dzieci z grupy MLD ujawniły większe odchylenie w lewo niż dzieci z grupy TD w przypadku prawie wszystkich liczb, z wyjątkiem 7 i 8. Ocena wielkości błędu szacowania miejsca dla każdej liczby oddzielnie pozwoliła na opisanie profilu rozkładu wartości tego błędu, a co za tym idzie, prawdopodobnych strategii tego szacowania stosowanych przez dzieci z obu grup.
Wnioski
Jak się wydaje, grupa MLD, przejawia tendencję do szacowania segmentów osi liczbowej, zaczynając od punktu odniesienia na lewym krańcu osi. Wyznaczanie kolejnego w jej centrum, nie ułatwia im poprawnego szacowania miejsca liczb 4 i 6. Ponadto u wszystkich dzieci odnotowano większy błąd szacowania w przypadku formatu niesymbolicznego (zbiory kropek), szczególnie dla wysokich wartości liczbowych, co można interpretować, zarówno jako przejaw błędów w szacowaniu miejsca liczb, jak i w przeliczaniu.
Słowa kluczowe:
dyskalkulia, zależności numeryczno-przestrzenne, umiejętności matematyczne, mentalna oś liczbowa, szacowanie miejsca liczb na osiBibliografia
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edition). Washington, DC: American Psychiatric Association. Google Scholar
Ashcraft, M. H., Moore, A. M (2012). Cognitive processes of numerical estimation in children. Journal of Experimental Child Psychology, 111(2), 246–267. DOI: 10.1016/j.jecp.2011.08.005 Google Scholar
Barth, H. C., Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14, 545–551. DOI: 10.1037/a0028560 Google Scholar
Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B, 57(1) (Methodological), 289–300. DOI: 10.1111/j.2517-6161.1995.tb02031.x Google Scholar
Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, P., Zorzi, M. (2010). Numerical Estimation in Preschoolers. Developmental Psychology, 46(2), 545–551. DOI: 10.1037/a0017887 Google Scholar
Boland, P. J., Hutchinson, K. (2000). Student selection of random digits. Journal of the Royal Statistical Society: Series D (The Statistician), 49, 519–529. DOI: 10.1111/1467-9884.00250 Google Scholar
Bonato, M., Fabbri, S., Umiltà, C., Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33, 1410–1419. DOI: 10.1037/0096-1523.33.6.1410 Google Scholar
Booth, J.L., Siegler R.S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189–201. DOI: 10.1037/0012-1649.41.6.189 Google Scholar
Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534–541. DOI: 10.1016/j.tics.2010.09.007 Google Scholar
Butterworth, B. (2003). Dyscalculia Screener by Brian Butterworth. Highlighting pupils with specific learning difficulties in maths. nferNelson Publishing Company Limited, London. Google Scholar
Butterworth, B., Varma S., Laurillard, D. (2011). Dyscalculia: From Brain to Education. Science, 332, 1049–1053. DOI: 10.1126/science.1201536 Google Scholar
Cai, Y.C., Li, S.X. (2015). Small number preference in guiding attention. Experimental Brain Research, 233, 539–550. DOI: 10.1007/s00221-014-4134-3 Google Scholar
Cangöz, B., Altun, A., Olkun, S. Kacar, F. (2013). Computer Based Screening Dyscalculia: Cognitive and Neuropsychological Correlates. Turkish Online Journal of Educational Technology, 12(3). Google Scholar
Cappeletti, M., Muggleton, N., Walsh, V. (2009). Quantity without numbers and numbers without quantity in the parietal cortex. Neuroimage, 46, 522–529. DOI: 10.1016/j.neuroimage.2009.02.016 Google Scholar
Cipora, K., Nuerk, H.C. (2013). Is the SNARC effect related to the level of mathematics? No systematic relationship observed despitemore power,more repetitions, andmore direct assessment of arithmetic skill. The Quarterly Journal of Experimental Psychology, 66, 1974–1991. DOI: 10.1080/17470218.2013.772215 Google Scholar
Cipora, K., Patro, K., Nuerk, H.-C. (2015). Are spatial-numerical associations a cornerstone for arithmetic learning? The lack of genuine correlations suggests no. Mind, Brain, and Education, 9, 190–206. DOI: 10.1111/mbe.12093 Google Scholar
Cohen, D. J., Blanc-Goldhammer, D. (2011). Numerical bias in bounded and unbounded number line tasks. Psychonomic Bulletin & Review, 18, 331–338. DOI: 10.3758/s13423-011-0059-z Google Scholar
Cohen, D. J. Quinlan, P.T. (2018). The log–linear response function of the bounded number-line task is unrelated to the psychological representation of quantity. Psychonomic Bulletin & Review, 25, 447–454. DOI: 10.3758/s13423-017-1290-z Google Scholar
Dehaene, S. (2011). Number sense. How the mind creates mathematics. Oxford University Press. Google Scholar
Dehaene, S., Molko, N., Cohen, L., Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224. DOI: 10.1016/j.conb.2004.03.008 Google Scholar
Dehaene, S., Piazza, M., Pinel, P., Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506. DOI: 10.1080/02643290244000239 Google Scholar
Ebersbach, M., Luwel, K. Verschaffel, L. (2013). Comparing apples and pears in studies on magnitude estimations. Frontiers in Psychology, 4, 332. DOI: 10.3389/fpsyg.2013.00332 Google Scholar
Feigenson, L., Dehaene, S., Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314. DOI: 10.1016/j.tics.2004.05.002 Google Scholar
Field, A., Miles, J. Field, Z. (2012). Discovering statistics using R, London: Sage. Google Scholar
Field, A., Wilcox, R. R. (2017). Robust statistical methods: a primer for clinical psychology and experimental psychopathology researchers. Behaviour Research and Therapy, 98, 19–38. DOI: 10.1016/j.brat.2017.05.013 Google Scholar
Fischer, M. H., Shaki, S. (2014). Spatial associations in numerical cognition—From single digits to arithmetic. The Quarterly Journal of Experimental Psychology, 67(8), 1461–1483. DOI: 10.1080/17470218.2014.927515 Google Scholar
Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114, 345–362. DOI: 10.1037/0033-2909.114.2.345 Google Scholar
Geary, D. C. (2011). Cognitive predictors of individual differences in achievement growth in mathematics: a five year longitudinal study. Developmental Psychology, 47, 1539–1552. DOI: 10.1037/a0025510 Google Scholar
Geary, D. C., Hoard, M. K., Byrd-Craven, J., De Soto, C. M. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121. DOI: 10.1016/j.jecp.2004.03.002 Google Scholar
Geary, D. C., Hoard, M. K, Nugent, L., Bailey, D. H. (2012). Mathematical Cognition Deficits in Children With Learning Disabilities and Persistent Low Achievement: A Five-Year Prospective Study, Journal of Educational Psychology, 104, 206–223. DOI: 10.1037/a0025398 Google Scholar
Geary, D. C., Hoard, M.K., Nugent, L., Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental Neuropsychology, 33, 277–299. DOI: 10.1080/87565640801982361 Google Scholar
Georges, C., Hoffmann, D., Schiltz, C. (2017). Mathematical abilities in elementary school: Do they relate to number–space associations? Journal of Experimental Child Psychology, 161, 126–147. DOI: 10.1016/j.jecp.2017.04.011 Google Scholar
Göbel, S. M., Calabria, M., Farnè, A., Rossetti, Y. (2006). Parietal rTMS distorts the mental number line: simulating 'spatial' neglect in healthy subjects. Neuropsychologia, 44, 860–868. DOI: 10.1016/j.neuropsychologia.2005.09.007 Google Scholar
Gut M., Matulewski, J., Goraczewski, Ł. Prokalkulia 6–9: Test oceny behawioralnych wskaźników umysłowych reprezentacji liczb i ryzyka dyskalkulii. Pomorskie Centrum Diagnozy, Terapii i Edukacji Matematycznej Promathematica, Gdańsk 2016. Google Scholar
Halberda, J., Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44, 1457–1465. DOI: 10.1037/a0012682 Google Scholar
Halberda, J., Mazzocco, M. M., Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665–668. DOI: 10.1038/nature07246 Google Scholar
de Hevia, M.D., Vallar, G., Girelli, L. (2008). Visualizing numbers in the mind's eye: the role of visuo-spatial processes in numerical abilities. Neuroscience & Biobehavioral Reviews, 32, 1361–1372. DOI: 10.1016/j.neubiorev.2008.05.015 Google Scholar
Hoffmann, D., Mussolin, C., Martin R., Schiltz, C. (2014). The impact of mathematical proficiency on the number-space association. PLoS ONE, 9(1), e85048. DOI: 10.1371/journal.pone.0085048 Google Scholar
Hollands, J. G., Dyre, B. P. (2000). Bias in proportion judgments: The cyclical power model. Psychological Review, 107, 500–524. DOI: 10.1037/0033-295X.107.3.500 Google Scholar
Hubbard, E. M., Piazza, M., Pinel, P., Dehaene S. (2005). Interactions between number and space in parietal cortex. Nature Review of Neuroscience, 6, 435–448. DOI: 10.1038/nrn1684 Google Scholar
Isaacs, E. B., Edmonds, C. J., Lucas, A., Gadian, D. G. (2001). Calculation difficulties in children of very low birthweight: a neural correlate. Brain, 124, 1701–1707. DOI: 10.1093/brain/124.9.1701 Google Scholar
Kaufmann, L., von Aster, M. (2012). The Diagnosis and Management of Dyscalculia. Deutsches Arzteblatt International, 109(45), 767–778. DOI: 10.3238/arztebl.2012.0767 Google Scholar
Koontz, K. L., Berch, D. B. (1996). Identifying simple numerical stimuli: Processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2, 1–23. DOI: 10.1080/135467996387525 Google Scholar
Krajcsi, A., Kojouharova, P., Lengyel, G. (2017). Development of Understanding Zero. Preprints. Google Scholar
Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., Gälli, M., Martin E., von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. Neuroimage 57, 782–795. DOI: 10.1016/j.neuroimage.2011.01.070 Google Scholar
Landerl, K., Bevan, A., Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93, 99–125. DOI: 10.1016/j.cognition.2003.11.004 Google Scholar
Landerl, K., Fussenegger, B., Moll, K., Willburger, E. (2009). Dyslexia and dyscalculia: two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103(3), 309–324. DOI: 10.1016/j.jecp.2009.03.006 Google Scholar
LeFevre, J-A, Lira,C. J., Sowinski, C., Cankaya, O., Kamawar, D., Skwarchuk, S-L. (2013). Charting the role of the number line in mathematical development. Frontiers in Psychology, 4, 641. DOI: 10.3389/fpsyg.2013.00641 Google Scholar
Link, T., Huber, S., Nuerk, H-Ch., Moeller, K. (2014). Unbounding the mental number line – new evidence on children’s spatial representation of numbers. Frontiers in Psychology, 4, 1021. DOI: 10.3389/fpsyg.2013.01021 Google Scholar
Longo, M.R., Lourenco, S.F. (2007). Spatial attention and the mental number line: Evidence for characteristic biases and compression. Neuropsychologia, 37, 843–855. DOI: 10.1016/j.neuropsychologia.2006.11.002 Google Scholar
Longo, M. R., Lourenco, S.F., Francisco, A. (2012). Approaching stimuli bias attention in numerical space. Acta Psychologica, 140, 129–132. DOI: 10.1016/j.actpsy.2012.04.001 Google Scholar
Luwel, K., Peeters, D, Dierckx, G., Elke Sekeris E., Verschaffel, L. (2018). Benchmark-based Strategy Use in Atypical Number Lines. Canadian Journal of Experimental Psychology, 72(4), 253–263. DOI: 10.1037/cep0000153 Google Scholar
Mair, P., Wilcox, R. (2016). Robust statistical methods in r using the wrs2 package. Unpublished technical report. Google Scholar
McCaskey, U., von Aster, M., Maurer, U., Martin, E., O’Gorman Tuura, R., Kucian, K. (2018). Longitudinal brain development of numerical skills in typically developing children and children with developmental dyscalculia. Frontiers in Human Neuroscience, 11, 629. DOI: 10.3389/fnhum.2017.00629 Google Scholar
Merrit, D. J., Brannon, E. M. (2013). Nothing to it: Precursors to a zero concept in preschoolers. Behavioural Processes, 93, 91–97. DOI: 10.1016/j.beproc.2012.11.001 Google Scholar
Michels, L., O’Gorman, R., Kucian, K (2018). Functional hyperconnectivity vanishes in children with developmental dyscalculia after numerical intervention. Developmental Cognitive Neuroscience, 30, 291–303. DOI: 10.1016/j.dcn.2017.03.005 Google Scholar
Mix, K. S., Cheng, Y. L. (2012). The relation between space and math: developmental and educational implications. Advances in Child Development and Behavior, 42, 197–243. DOI: 10.1016/b978-0-12-394388-0.00006-x Google Scholar
Molko, N., Cachia, A., Riviere, D., Mangin, J. F., Bruandet, M., Le Bihan, D., Cohen, L., Dehaene, S. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron, 40, 847–858. DOI: 10.1016/s0896-6273(03)00670-6 Google Scholar
Mussolin, C., Mejias, S., Noël, M.P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115, 10–25. DOI: 10.1016/j.cognition.2009.10.006 Google Scholar
Mussolin, C., De Volder, A., Grandin, C., Schlögel, X., Nassogne, M. C., Noël, M. P. (2009). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22, 860–874. DOI: 10.1162/jocn.2009.21237 Google Scholar
Nuerk, H. C., Moeller, K., Klein, E., Willmes, K., Fischer, M. (2011). Extending the mental number line. A review of multi-digit number processing. Journal of Psychology, 219, 3–22. DOI: 10.1027/2151-2604/a000041 Google Scholar
Patro, K., Nuerk, H.-Ch., Cress, U., Haman, M. (2014). How number-space relationships are assessed before formal schooling: A taxonomy proposal. Frontiers in Psychology, 5, 419. doi.org/10.3389/fpsyg.2014.00419 Google Scholar
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S., Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33–41. DOI: 10.1016/j.cognition.2010.03.012 Google Scholar
Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274–278. DOI: 10.1037/h0028573 Google Scholar
Rinaldi, L., Girelli, L. (2016). A place for zero in the brain. Trends in Cognitive Sciences, 20(8), 563–564. DOI: 10.1016/j.tics.2016.06.006 Google Scholar
Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., Loenneker T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. Neuroimage, 39, 417–422. DOI: 10.1016/j.neuroimage.2007.08.045 Google Scholar
Rouder, J. N, Geary, D. C. (2014). Children's cognitive representation of the mathematical number line. Developmental Science, 17(4), 525–536. DOI: 10.1111/desc.12166 Google Scholar
Rykhlevskaia, E., Uddin, L. Q., Kondos, L., Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 51. DOI: 10.3389/neuro.09.051.2009 Google Scholar
Sandrini M., Rusconi E. (2009). A brain for numbers. Cortex, 45, 796–803. DOI: 10.1016/j.cortex.2008.09.002 Google Scholar
Sasanguie, D., Verschaffel, L., Reynvoet, B. Luwel, K. (2016). The Development of Symbolic and Non-Symbolic Number Line Estimations: Three Developmental Accounts Contrasted Within Cross-Sectional and Longitudinal Data. Psychologica Belgica, 56(4), 382–405. DOI: 10.5334/pb.276 Google Scholar
Schwarz, W., Eiselt, A. K. (2009). The perception of temporal order along the mental number line. Journal of Experimental Psychology: Human Perception and Performance, 35, 989–1004. DOI: 10.1037/a0013703 Google Scholar
Sella, F., Sasanguie, D., Reynvoet, B. (2020). Judging the order of numbers relies on familiarity rather than activating the mental number line. Acta Psychologica, 204, 1–7. DOI: 10.1016/j.actpsy.2020.103014 Google Scholar
Siegler, R. S., Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–243. DOI: 10.1111/1467-9280.02438 Google Scholar
Wai, J., Lubinski, D., Benbow, C. P. (2009). Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817–835. DOI: 10.1037/a0016127 Google Scholar
Wechsler, D. (1974). Wechsler intelligence scale for children—revised. New York: Psychological Corporation. Google Scholar
Wellman, H. M., Miller, K. (1986). Thinking about nothing: Development of concepts of zero. British Journal of Developmental Psychology, 4, 31–42. DOI: 10.1111/j.2044-835X.1986.tb00995.x Google Scholar
Wilcox, R. R. (2012). Introduction to Robust Estimation & Hypothesis Testing. 3rd edition. Amsterdam, The Netherlands: Elsevier. Google Scholar
2Bug Bomb Games Studio w Toruniu
Uniwersytet Gdański
Licencja
Prawa autorskie (c) 2021 Przegląd Psychologiczny

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.