Rozdzielczość czasowa, pamięć robocza a rodzaje błędów w Teście Matryc Ravena – badanie pilotażowe
Krzysztof Tołpa
Uniwersytet Mikołaja Kopernika w Toruniuhttps://orcid.org/0000-0001-6223-234X
Monika Lewandowska
Uniwersytet Mikołaja Kopernika w Toruniuhttps://orcid.org/0000-0002-7354-3693
Jan Nikadon
SWPS Uniwersytet Humanistycznospołecznyhttps://orcid.org/0000-0002-2038-254X
Joanna Dreszer
Uniwersytet Mikołaja Kopernika w Toruniuhttps://orcid.org/0000-0002-2809-2934
Abstrakt
Cel
Celem badania pilotażowego było sprawdzenie zależności pomiędzy rozdzielczością czasową w zakresie milisekundowym, pamięcią roboczą oraz inteligencją psychometryczną z uwzględnieniem analizy jakościowej błędów w Teście Matryc Ravena w wersji dla Zaawansowanych TMZ.
Metoda
Trzydzieści sześć osób (24 mężczyzn i 12 kobiet, w wieku 17–19 lat) wykonało zadanie polegające na prezentowaniu par bodźców w szybkim następstwie czasowym, a następnie rozwiązywało zadanie mierzące pamięć roboczą Automated Operation Span Task Aospan oraz TMZ. Rozdzielczość czasową mierzono za pomocą progu postrzegania kolejności bodźców PPK, wyznaczanego za pomocą algorytmu adaptacyjnego dla poprawności 75%.
Wyniki
Wykazano tendencję do rzadszego popełniania błędów typu Błędna Zasada w TMZ przez osoby uzyskujące niskie wartości PPK: rho(34) = 0,46, p < 0,05. Ponadto zaobserwowano związek między wynikami Aospan i TMZ, dla procentu poprawnie odpamiętanych liter (rho(34) = 0,55, p < 0,01), zaś dla procentu poprawnie odpamiętanych sekwencji (rho(34) = 0,43, p = 0,05).
Konkluzje
Prezentowane badanie jest pierwszym, w którym wykazano związek czasowego opracowywania informacji na poziomie milisekund z typami błędów popełnianymi w teście inteligencji ogólnej. Osoby, które uzyskały wyższe progi postrzegania kolejności bodźców częściej stosowały przy wyborze odpowiedzi jakościowo odmienne od poprawnych reguły rozumowania, co może odzwierciedlać mniejsze zasoby pamięci roboczej potrzebne do odkrycia właściwej reguły.
Słowa kluczowe:
czasowe przetwarzanie informacji, rozdzielczość czasowa, inteligencja ogólna, pamięć roboczaBibliografia
Babcock, R. L. (2002). Analysis of age differences in types of errors on the Raven’s Advanced Progressive Matrices. Intelligence, 30(6), 485–503. DOI : https://doi.org/10.1016/S0160-2896(02)00124-1
Crossref
Google Scholar
Bartholomew, A. J., Meck, W. H., Cirulli, E. T. (2015). Analysis of Genetic and Non-Genetic Factors Influencing Timing and Time Perception. PLOS ONE, 19. DOI : https://doi.org/10.1371/journal.pone.0143873
Crossref
Google Scholar
Block, R.A. (1990). Cognitive models of psychological time. New York: Lawrence Erlbaum Associates. Google Scholar
Chelonis, J., Flake R. A., Baldwin, R. L., Blake, D. J., Merle, G. P. (2004). Developmental aspects of timing behavior in children. Neurotoxicology and Teratology, 26(3), 461–476. DOI: https://doi.org/10.1016/j.ntt.2004.01.004
Crossref
Google Scholar
Chuderski, A. (2015). Why People Fail on the Fluid Intelligence Tests. Journal of Individual Differences, 36(3), 138–149. DOI: https://doi.org/10.1027/1614-0001/a000164
Crossref
Google Scholar
Coyle, T. R., Pillow, D. R., Snyder, A. C., Kochunov, P. (2011). Processing Speed Mediates the Development of General Intelligence ( g ) in Adolescence. Psychological Science, 22(10), 1265–1269. DOI: https://doi.org/10.1177/0956797611418243
Crossref
Google Scholar
Deary, I.J. (1995). Auditory inspection time and intelligence: What is the direction of causation? Developmental Psychology, 31, 237–250. DOI : https://doi.org/10.1037/0012-1649.31.2.237
Crossref
Google Scholar
Deary, I.J. (2000). Looking down on human intelligence. From psychometrics to the brain. Oxford: Oxford University Press. DOI : https://doi.org/10.1093/acprof:oso/9780198524175.001.0001
Crossref
Google Scholar
Der, G., Deary, I. J. (2017). The relationship between intelligence and reaction time varies with age: Results from three representative narrow-age age cohorts at 30, 50 and 69 years. Intelligence, 64, 89–97. DOI: https://doi.org/10.1016/j.intell.2017.08.001
Crossref
Google Scholar
Drake, C., Jones, M.R., Baruch, C. (2000).The development of rhythmic attending in auditory sequences: Attunement, referent period, focal attending. Cognition, 77, 251-288. DOI : https://doi.org/10.1016/S0010-0277(00)00106-2
Crossref
Google Scholar
Duan, X., Dan, Z., Shi, J. (2013). The Speed of Information Processing of 9- to 13-Year-Old Intellectually Gifted Children. Psychological Reports, 112(1), 20–32. DOI: https://doi.org/10.2466/04.10.49.PR0.112.1.20-32
Crossref
Google Scholar
Engle, R. W., Laughlin, J. E., Tuholski, S. W., Conway, A. R. A. (1999). Working Memory, Short-Term Memory, and General Fluid Intelligence: A Latent-Variable Approach. Journal of Experimental Psychology: General, 128(3), 309–331. DOI: https://doi.org/10.1037/0096-3445.128.3.309
Crossref
Google Scholar
Engle, R. W. (2018). Working Memory and Executive Attention: A Revisit. Perspectives on Psychological Science, 13(2), 190–193. DOI : https://doi.org/10.1177/1745691617720478
Crossref
Google Scholar
Forbes, A. R. (1964). An Item Analysis Of The Advanced Matrices. British Journal of Educational Psychology, 34(3), 223–236. DOI: https://doi.org/10.1111/j.2044-8279.1964.tb00632.x
Crossref
Google Scholar
Fraisse, P. (1984). Perception and estimation of time. Annual Review of Psychology, 35, 1–36. DOI : https://doi.org/10.1146/annurev.ps.35.020184.000245
Crossref
Google Scholar
Gibbon, J. (1991). Origin of scalar timing. Learning and Motivation, 22, 3–38. DOI : https://doi.org/10.1016/0023-9690(91)90015-Z
Crossref
Google Scholar
Grudnik, J. L., Kranzler, J. H. (2001). Meta-analysis of the relationship between intelligence and inspection time. Intelligence, 29(6), 523–535. DOI: https://doi.org/10.1016/S0160-2896(01)00078-2
Crossref
Google Scholar
Habib, M. (2021). The Neurological Basis of Developmental Dyslexia and Related Disorders: A Reappraisal of the Temporal Hypothesis, Twenty Years on. Brain Sciences, 11(6), 708. DOI: https://doi.org/10.3390/brainsci11060708
Crossref
Google Scholar
Helmbold, N., Troche, S., Rammsayer, T. (2006). Temporal information processing and pitch discrimination as predictors of general intelligence. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 60(4), 294–306. DOI: https://doi.org/10.1037/cjep2006027
Crossref
Google Scholar
Helmbold, N., Troche, S., Rammsayer, T. (2007). Processing of Temporal and Nontemporal Information as Predictors of Psychometric Intelligence: A Structural-Equation-Modeling Approach. Journal of Personality, 75(5), 985–1006. DOI: https://doi.org/10.1111/j.1467-6494.2007.00463.x
Crossref
Google Scholar
Holm, L., Ullén, F., Madison, G. (2011). Intelligence and temporal accuracy of behaviour: Unique and shared associations with reaction time and motor timing. Experimental Brain Research, 214(2), 175–183. DOI: https://doi.org/10.1007/s00221-011-2817-6
Crossref
Google Scholar
Horn, J.L., Cattell, R.B. (1967). Age differences in fluid and crystallized intelligence. Acta Psychologica, 26, 107–129. DOI : https://doi.org/10.1016/0001-6918(67)90011-X
Crossref
Google Scholar
Hove, M. J., Gravel, N., Spencer, R. M. C., Valera, E. M. (2017). Finger tapping and pre-attentive sensorimotor timing in adults with ADHD. Experimental Brain Research, 235(12), 3663–3672. DOI: https://doi.org/10.1007/s00221-017-5089-y
Crossref
Google Scholar
Israel, N. (2006). Raven’s Advanced Progressive Matrices within a South African context. Google Scholar
Unpublished Masters Research Report, University of the Witwatersrand, Johannesburg. Google Scholar
Ivry, R.B., Spencer, R.M.C. (2004). The neural representation of time. Current Opinion in Neurobiology, 14, 225–232. DOI: https://doi.org/10.1016/j.conb.2004.03.013
Crossref
Google Scholar
Jabłońska, K., Piotrowska, M., Bednarek, H., Szymaszek, A., Marchewka, A., Wypych, M., Szeląg, E. (2020). Maintenance vs. Manipulation in Auditory Verbal Working Memory in the Elderly: New Insights Based on Temporal Dynamics of Information Processing in the Millisecond Time Range. Frontiers in Aging Neuroscience, 12, 194. DOI: https://doi.org/10.3389/fnagi.2020.00194
Crossref
Google Scholar
Jarosz, A. F., Wiley, J. (2012). Why does working memory capacity predict RAPM performance? A possible role of distraction. Intelligence, 40(5), 427–438. DOI: https://doi.org/10.1016/j.intell.2012.06.001
Crossref
Google Scholar
Jensen, A. R. (2005). Psychometric G and Mental Chronometry. Cortex, 41(2), 230–231. DOI: https://doi.org/10.1016/S0010-9452(08)70902-X
Crossref
Google Scholar
Jensen, A. R. (1982). Reaction Time and Psychometric g. W H. J. Eysenck (Red.), A Model for Intelligence (s. 93–132). Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-68664-1_4
Crossref
Google Scholar
Jensen, A. R. (1993). Why Is Reaction Time Correlated with Psychometric g? Current Directions in Psychological Science, 2(2), 53–56. DOI : https://doi.org/10.1111/1467-8721.ep10770697
Crossref
Google Scholar
Karampela, O., Madison, G., Holm, L. (2020). Motor timing training improves sustained attention performance but not fluid intelligence: Near but not far transfer. Experimental Brain Research, 238(4), 1051–1060. DOI: https://doi.org/10.1007/s00221-020-05780-4
Crossref
Google Scholar
Kołodziejczyk, I., Szeląg, E. (2008). Auditory perception of temporal order in Centenarians in comparison with young and elderly subjects. Acta Neurobiologiae Experimentalis, 68(3),
Crossref
Google Scholar
–381. Google Scholar
Kranzler, J. H., Jensen, A. R. (1989). Inspection time and intelligence: A meta-analysis. Intelligence, 13(4), 329–347. DOI: https://doi.org/10.1016/S0160-2896(89)80006-6
Crossref
Google Scholar
Miller, L. T., Vernon, P. A. (1996). Intelligence, reaction time, and working memory in 4- to 6-year-old children. Intelligence, 22(2), 155–190. DOI: https://doi.org/10.1016/S0160-2896(96)90014-8
Crossref
Google Scholar
Madison, G., Forsman, L., Blom, Ö., Karabanov, A., Ullén, F. (2009). Correlations between intelligence and components of serial timing variability. Intelligence, 37, 68–75. DOI : https://doi.org/10.1016/j.intell.2008.07.006
Crossref
Google Scholar
Mueller, S. T., Piper, B. J. (2014). The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. Journal of Neuroscience Methods, 222, 250–259. DOI: https://doi.org/10.1016/j.jneumeth.2013.10.024
Crossref
Google Scholar
Nettelbeck, T., Lally, M. (1976). Inspection time and measured intelligence. British Journal Google Scholar
of Psychology, 67, 17–22. DOI: https://doi.org/10.1111/j.2044-8295.1976.tb01493.x
Crossref
Google Scholar
O’Connor, T. A., Burns, N. R. (2003). Inspection time and general speed of processing. Personality and Individual Differences, 35(3), 713–724. DOI: https://doi.org/10.1016/S0191-8869(02)00264-7
Crossref
Google Scholar
Oroń, A., Szymaszek, A., Szeląg, E. (2015). Temporal information processing as a basis for auditory comprehension: clinical evidence from aphasic patients. International Journal of Language & Communication Disorders, 50(5), 604–615. DOI : https://doi.org/10.1111/1460-6984.12160
Crossref
Google Scholar
Pahud, O. (2017). The influence of attention on the relationship between temporal resolution power and general intelligence. Rozprawa doktorska. University of Bern, Faculty of Human Sciences. Google Scholar
Pahud, O., Rammsayer, T. H., Troche, S. J. (2018). Elucidating the Functional Relationship Between Speed of Information Processing and Speed-, Capacity-, and Memory-Related Aspects of Psychometric Intelligence. Advances in Cognitive Psychology, 14(1), 3–13. DOI: https://doi.org/10.5709/acp-0233-4
Crossref
Google Scholar
Petrill, S.A., Deary, I. (2001). Inspection time and intelligence: Celebrating 25 years Google Scholar
of research. Intelligence, 29(6), 441–442. DOI : https://doi.org/10.1016/S0160-2896(01)00079-4
Crossref
Google Scholar
Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1, 56–61. DOI : https://doi.org/10.1016/S1364-6613(97)01008-5
Crossref
Google Scholar
Pöppel, E. (2004). Lost in time: a historical frame, elementary processing units and the 3-second window. Acta Neurobiologiae Experimentalis, 64, 295–302.
Crossref
Google Scholar
Pöppel, E. (1994). Temporal mechanisms in perception. International Review of Neurobiology, 37, 185–202. DOI : https://doi.org/10.1016/s0074-7742(08)60246-9
Crossref
Google Scholar
Rammsayer, T. H., Brandler, S. (2002). On the relationship between general fluid intelligence and psychophysical indicators of temporal resolution in the brain. Journal of Research in Personality, 36, 507-530. DOI : https://doi.org/10.1016/S0092-6566(02)00006-5
Crossref
Google Scholar
Rammsayer, T. H., Brandler, S. (2007). Performance on temporal information processing as an index of general intelligence. Intelligence, 35(2), 123–139. DOI: https://doi.org/10.1016/j.intell.2006.04.007
Crossref
Google Scholar
Raven, J. C. (1971). Advanced Progressive Matrices, Sets I and II. Plan and use of the scale with report of experimental work. London: H. K. Lewis and Co. Ltd. Google Scholar
Salthouse, T.A. (2001). Structural models of the relations between age and measures Google Scholar
of cognitive functioning. Intelligence, 29, 93–115. DOI : https://doi.org/10.1016/S0160-2896(00)00040-4
Crossref
Google Scholar
Salthouse, T. A. (2011). Neuroanatomical substrates of age-related cognitive decline. Psychological Bulletin, 137(5), 753–784. DOI: https://doi.org/10.1037/a0023262
Crossref
Google Scholar
Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A. (2016). Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision Research, 122, 105–123. DOI: https://doi.org/10.1016/j.visres.2016.02.002
Crossref
Google Scholar
Shen, Y., Dai, W., Richards, V. M. (2015). A MATLAB toolbox for the efficient estimation of the psychometric function using the updated maximum-likelihood adaptive procedure. Behavior Research Methods, 47(1), 13–26. DOI: https://doi.org/10.3758/s13428-014-0450-6
Crossref
Google Scholar
Skolimowska, J. (2011). Charakterystyka wybranych funkcji poznawczych w zdrowym starzeniu się, łagodnych zaburzeniach poznawczych i chorobie Alzheimera. Nieopublikowana rozprawa doktorska (promotor: prof. dr hab. E. Szeląg). Instytut Biologii Doświadczalnej PAN, Warszawa. Google Scholar
Spearman, C. (1904). 'General intelligence,' objectively determined and measured. The American Journal of Psychology, 15(2), 201–293. DOI: https://doi.org/10.2307/1412107
Crossref
Google Scholar
Spencer, R. M. C., Ivry, R. B. (2005). Comparison of patients with Parkinson's disease or cerebellar lesions in the production of periodic movements involving event-based or emergent timing. Brain and Cognition, 58(1), 84–93. DOI: https://doi.org/10.1016/j.bandc.2004.09.010
Crossref
Google Scholar
Surwillo, W.W. (1964). Age and the perception of short intervals of time. Journal Google Scholar
of Gerontology, 19, 322–324. DOI : https://doi.org/10.1093/geronj/19.3.322
Crossref
Google Scholar
Surwillo, W.W. (1973). Choice reaction time and speed of information processing in old age. Perceptual and Motor Skills, 36, 321–322. DOI: https://doi.org/10.2466/pms.1973.36.1.321
Crossref
Google Scholar
Szeląg, E., Jabłońska, K., Piotrowska, M., Szymaszek, A., Bednarek, H. (2018). Spatial and Spectral Auditory Temporal-Order Judgment (TOJ) Tasks in Elderly People Are Performed Using Different Perceptual Strategies. Frontiers in Psychology, 9, 2557. DOI: https://doi.org/10.3389/fpsyg.2018.02557
Crossref
Google Scholar
Szeląg, E., Szymaszek, A., Aksamit-Ramotowska, A., Fink, M., Ulbrich, P., Wittmann, M., i in. (2011). Temporal processing as a base for language universals: Cross-linguistic comparisons on sequencing abilities with some implications for language therapy. Restorative Neurology and Neuroscience, (1), 35–45. DOI: https://doi.org/10.3233/RNN-2011-0574
Crossref
Google Scholar
Szeląg, E., Lewandowska, M., Wolak, T., Seniow, J., Poniatowska, R., Pöppel, E., Szymaszek, A. (2014). Training in rapid auditory processing ameliorates auditory comprehension in aphasic patients: A randomized controlled pilot study. Journal of the Neurological Sciences, 338(1–2), 77–86. DOI: https://doi.org/10.1016/j.jns.2013.12.020
Crossref
Google Scholar
Szymaszek, A., Sereda, M., Pöppel, E., Szeląg, E. (2009). Individual differences in the perception of temporal order: The effect of age and cognition. Cognitive Neuropsychology, 26(2), 135–147. DOI: https://doi.org/10.1080/02643290802504742
Crossref
Google Scholar
Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9(2), 182–198. DOI: https://doi.org/10.1016/0093-934X(80)90139-X
Crossref
Google Scholar
Troche, S. J., Rammsayer, T. H. (2009). The influence of temporal resolution power and working memory capacity on psychometric intelligence. Intelligence, 37(5), 479–486. DOI: https://doi.org/10.1016/j.intell.2009.06.001
Crossref
Google Scholar
Ulbrich, P., Churan, J., Fink, M., Wittmann, M. (2009). Perception of Temporal Order: The Effects of Age, Sex, and Cognitive Factors. Aging, Neuropsychology, and Cognition, 16(2), 183–202. DOI: https://doi.org/10.1080/13825580802411758
Crossref
Google Scholar
Ullén, F., Forsman, L., Blom, Ö., Karabanov, A., Madison, G. (2008). Intelligence Google Scholar
and variability in a simple timing task share neural substrates in the prefrontal white matter. Journal of Neuroscience, 28(16), 4238-4243. DOI : https://doi.org/10.1523/JNEUROSCI.0825-08.2008
Crossref
Google Scholar
Unsworth, N., Heitz, R. P., Schrock, J. C., Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498–505. DOI: https://doi.org/10.3758/BF03192720
Crossref
Google Scholar
Wittmann, M., von Steinbüchel, N., Szeląg, E. (2001). Hemispheric specialisation for self-paced motor sequences. Cognitive Brain Research, 10, 341–344. DOI : https://doi.org/10.1016/s0926-6410(00)00052-5
Crossref
Google Scholar
Vanneste, S., Pouthas, V., Wearden, J.H. (2001). Temporal control of rhythmic performance: Google Scholar
A comparison between young and old adults. Experimental Aging Research, 27, 83–102. DOI : https://doi.org/10.1080/036107301750046151
Crossref
Google Scholar
Zajac, I. T., Burns, N. R. (2011). Do Auditory Temporal Discrimination Tasks Measure Temporal Resolution of the CNS? Psychology, 02(07), 743–753. DOI: https://doi.org/10.4236/psych.2011.27114
Crossref
Google Scholar
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.