Introduction to Causal Inference for Psychologists: Testable and Non-Testable Causal and Statistical Assumptions

Borysław Paulewicz

Jagiellonian University, Institute of Psychology
https://orcid.org/0000-0002-1270-2988


Abstrakt

The main goal of basic research is to answer causal questions. Generally, only the statistical part of this process tends to proceed in a partially formal way and according to clearly defined rules. At the same time, the causal relations are often treated informally or implicitly in a way that is prone to difficult-to-detect errors. This introduction aims to show psychology researchers some of the great benefits of approaching causal issues using a formal theory of causal inference. In this part, I discuss the non-obvious status and role of causal and statistical assumptions in causal inference. After covering, in a simple setting, the general shape of inference from causal assumptions, statistical assumptions, and data to causal effects, I outline, from a contemporary perspective, the limits of applicability of the general linear model. Then, I introduce the formal part of Pearl’s theory that relies on graphs. Using these tools, I show how one can analyze and interpret the results of an experiment on short-term memory search, and I discuss the back-door and front-door adjustments. To present the mathematical part of the theory in an accessible way without overly simplifying it, I illustrate some issues by using simulations written in R.


Słowa kluczowe:

causality, causal inference, causal calculus, research methods, metatheory, statistical inference, Bayesian inference


Bareinboim, E., Correa, J. D., Ibeling, D., & Icard, T. (2022). On Pearl’s hierarchy and the foundations of causal inference. In R. Dechter, J. Halpern, & H. Geffner (Eds.), Probabilistic and causal inference: The works of Judea Pearl (pp. 507–556). ACM Books.
Crossref   Google Scholar

Bareinboim, E., & Pearl, J. (2016). Causal inference and the data-fusion problem. Proceedings of the National Academy of Sciences, 113(27), 7345–7352. https://doi.org/10.1073/pnas.1510507113
Crossref   Google Scholar

Bareinboim, E., Tian, J., & Pearl, J. (2022). Recovering from selection bias in causal and statistical inference. In R. Dechter, J. Halpern, & H. Geffner (Eds.), Probabilistic and causal inference: The works of Judea Pearl (pp. 433–450). ACM Books.
Crossref   Google Scholar

Bedyńska, S., Książek, M., & Cypriańska, M. (2012). Statystyczny drogowskaz [A statistical signpost]. Wydawnictwo Akademickie Sedno.   Google Scholar

Berkson, J. (1946). Limitations of the application of fourfold table analysis to hospital data. Biometrics Bulletin, 2(3), 47–53. https://doi.org/10.2307/3002000
Crossref   Google Scholar

Blalock, H. M. (2018). Causal inferences in nonexperimental research. UNC Press Books.   Google Scholar

Bollen, K. A. (1989). Structural equations with latent variables (T. 210). John Wiley & Sons.
Crossref   Google Scholar

Borsboom, D. (2005). Measuring the mind: Conceptual issues in contemporary psychometrics. Cambridge University Press.
Crossref   Google Scholar

Brzeziński, J. (2022). Metodologia badań psychologicznych [Methodology of psychology research]. Wydawnictwo Naukowe PWN.   Google Scholar

Chater, N., & Oaksford, M. (1999). Ten years of the rational analysis of cognition. Trends in Cognitive Sciences, 3(2), 57–65. https://doi.org/10.1016/s1364-6613(98)01273-x
Crossref   Google Scholar

Cinelli, C., Forney, A., & Pearl, J. (2021). A crash course in good and bad controls. Sociological Methods & Research. https://doi.org/10.1177/00491241221099552
Crossref   Google Scholar

Duncan, O. D. (2014). Introduction to structural equation models. Elsevier.   Google Scholar

Field, A. P., & Wilcox, R. R. (2017). Robust statistical methods: A primer for clinical psychology and experimental psychopathology researchers. Behaviour Research and Therapy, 98, 19–38. https://doi.org/10.1016/j.brat.2017.05.013
Crossref   Google Scholar

Galles, D., & Pearl, J. (1998). An axiomatic characterization of causal counterfactuals. Foundations of Science, 3(1), 151–182. https://doi.org/10.1023/A:1009602825894
Crossref   Google Scholar

Greenland, S. (2022). The causal foundations of applied probability and statistics. In R. Dechter, J. Halpern, & H. Geffner (Eds.), Probabilistic and causal inference: The works of Judea Pearl (pp. 605–624). ACM Books.
Crossref   Google Scholar

Hoyle, R. H. (2012). Handbook of structural equation modeling. Guilford Press.   Google Scholar

Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Publications.   Google Scholar

Levy, J., Pashler, H., & Boer, E. (2006). Central interference in driving: Is there any stopping the psychological refractory period? Psychological Science, 17(3), 228–235. https://doi.org/10.1111/j.1467-9280.2006.01690.x
Crossref   Google Scholar

Liddell, T. M., & Kruschke, J. K. (2018). Analyzing ordinal data with metric models: What could possibly go wrong? Journal of Experimental Social Psychology, 79, 328–348. https://doi.org/10.1016/j.jesp.2018.08.009
Crossref   Google Scholar

McElreath, R. (2020). Statistical rethinking: A bayesian course with examples in R and Stan. Chapman and Hall/CRC.
Crossref   Google Scholar

Millsap, R. E. (2012). Statistical approaches to measurement invariance. Routledge.
Crossref   Google Scholar

Mohan, K., Pearl, J., & Tian, J. (2013). Graphical models for inference with missing data. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing System, 26 (NIPS-2013) (pp. 1277–1285). Curran Associates, Inc.   Google Scholar

Paulewicz, B., & Blaut, A. (2022). The general causal cumulative model of ordinal response. PsyArXiv. https://doi.org/10.31234/osf.io/e7a3x
Crossref   Google Scholar

Paulewicz, B., Chuderski, A., & Nęcka, E. (2007). Insight problem solving, fluid intelligence, and executive control: A structural equation modeling approach. In S. Vosniadou, D. Kayser, & A. Protopapas (Eds.), Proceedings of the European Cognitive Science Conference 2007 (pp. 586–591). Psychology Press.   Google Scholar

Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge University Press.   Google Scholar

Pearl, J. (2012). The causal mediation formula – a guide to the assessment of pathways and mechanisms. Prevention Science, 13(4), 426–436. https://doi.org/10.1007/s11121-011-0270-1
Crossref   Google Scholar

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. John Wiley & Sons.   Google Scholar

Pearl, J., & Mackenzie, D. (2021). Przyczyny i skutki. Rewolucyjna nauka wnioskowania przyczynowego. Copernicus Center Press.   Google Scholar

R Core Team. (2022). R: A language and environment for statistical computing [Computer software manual]. Vienna. https://www.R-project.org/   Google Scholar

Rohrer, J. M., Hu¨nermund, P., Arslan, R. C., & Elson, M. (2022). That’s a lot to PROCESS! Pitfalls of popular path models. Advances in Methods and Practices in Psychological Science, 5(2). https://doi.org/10.1177/25152459221095827
Crossref   Google Scholar

Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 10 (469), 322–331. https://doi.org/10.1198/016214504000001880
Crossref   Google Scholar

Saville, D. J., & Wood, G. R. (2012). Statistical methods: The geometric approach. Springer Science & Business Media.   Google Scholar

Shpitser, I., & Pearl, J. (2008). Complete identification methods for the causal hierarchy. Journal of Machine Learning Research, 9, 1941–1979. https://doi.org/10.5555/1390681.1442797   Google Scholar

Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57(4), 421–457. https://www.jstor.org/stable/27828738   Google Scholar

Sternberg, S. (2001). Separate modifiability, mental modules, and the use of pure and composite measures to reveal them. Acta Psychologica, 106(1), 147–246. https://doi.org/10.1016/s0001-6918(00)00045-7
Crossref   Google Scholar

Townsend, J. T., &Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. Cambridge University Press.   Google Scholar

Van Bork, R., Rhemtulla, M., Sijtsma, K., & Borsboom, D. (2022). A causal theory of error scores. Psychological Methods. https://doi.org/10.1037/met0000521
Crossref   Google Scholar

Verma, T. S., & Pearl, J. (2022). Equivalence and synthesis of causal models. In R. Dechter, J. Halpern, & H. Geffner (red.), Probabilistic and causal inference: The works of Judea Pearl (pp. 221–236). ACM Books.
Crossref   Google Scholar

Wilcox, R. R. (2011). Introduction to robust estimation and hypothesis testing. Academic Press.
Crossref   Google Scholar

Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557–585.   Google Scholar


Opublikowane
2023-10-26

Cited By /
Share

Paulewicz, B. (2023). Introduction to Causal Inference for Psychologists: Testable and Non-Testable Causal and Statistical Assumptions. Przegląd Psychologiczny, 66(1), 209–240. https://doi.org/10.31648/przegldpsychologiczny.9731

Borysław Paulewicz 
Jagiellonian University, Institute of Psychology
https://orcid.org/0000-0002-1270-2988