A.F. da Rocha, E. Massad, P.C.C. dos Santos, A. Pereira, A neurobiologically inspired model of social cognition: Memes spreading in the Internet, „Biol. Inspired Cogn. Archit”, V. 141(2015), p. 86–96.
Crossref
Google Scholar
E. Even-Dar, A. Shapira, A note on maximizing the spread of influence in social networks, „Inf. Process. Lett”, V. 111, Is. 4(2011), pp.184–187.
Crossref
Google Scholar
A. Singh, Y.N. Singh, Rumor dynamics in weighted scale-free networks with degree correlations, „J. Complex Networks”, V. 3, Is. 3(2015), pp. 450–468. doi:10.1093/comnet/cnu047.
Crossref
Google Scholar
W. Galuba, K. Aberer, Outtweeting the Twitterers − Predicting Information Cascades in Microblogs, “Proceedings of the 3rd Conference on Online Social Networks”, USENIX Association Berkeley (2010), pp. 3−11.
Google Scholar
M. Nekovee, Y. Moreno, G. Bianconi, M. Marsili, Theory of rumour spreading in complex social networks, „Physica A: Statistical Mechanics and its Applications”, vol. 374, no. 1(2007), pp 457–470.
Crossref
Google Scholar
T. Kawamoto, N. Hatano, Viral spreading of daily information in online social networks, „Physica A: Statistical Mechanics and its Applications”, 406(2014), pp 34–41.
Crossref
Google Scholar
A. Guille, H. Hacid, A predictive model for the temporal dynamics of information diffusion in online social networks, WWW ‘12 Companion Proceedings of the 21st International Conference on World Wide Web (2012), pp. 1145−1152.
Crossref
Google Scholar
G.G. Pocheptsov, «House of Cards»: how the clip thinking changes to series thinking, “Khvylia”, (2016), 11 March, available at: <http://hvylya.net/analytics/society/kartochnyiy-domik-kak-na-smenu-klipovomu-myishleniyu-prihodit-serialnoe.html>, accessed June 12, 2017.
Google Scholar
А. Zakharchenko, Measurement of the efficiency of message impact on the activity of social networks members, „Aktualjni pytannja masovoji komunikaciji”, Is. 15(2014), pp 36−49.
Google Scholar