Number line estimation strategies used by children with dyscalculia and typically developing controls
Małgorzata Gut
Nicolaus Copernicus University in Toruńhttps://orcid.org/0000-0001-6540-7192
Łukasz Goraczewski
Bug Bomb Games Studio in ToruńKarolina Finc
Nicolaus Copernicus University in Toruńhttps://orcid.org/0000-0002-0157-030X
Jacek Matulewski
Nicolaus Copernicus University in Toruńhttps://orcid.org/0000-0002-1283-6767
Anna Walerzak-Więckowska
University of GdanskWłodzisław Duch
Nicolaus Copernicus University in Toruńhttps://orcid.org/0000-0001-7882-4729
Abstrakt
Aim
The aim of the study was to examine the effect of cognitive deficits, which are present in mathematical learning disabilities (e.g. dyscalculia risk) on the mental number line processing with the use of the one-digit numbers range as well as their symbolic and
non-symbolic format of presentation.
Method
We investigated number line estimation (NLE) in 20 children with mathematical learning disabilities (MLD) and 27 typically developing (TD) controls. They were examined with an NLE task using symbolic and non-symbolic 1–9 numbers.
Results
For all children, the greatest estimation error (EE) occurred for numbers located in the middle of number line, but the effect was more pronounced in the MLD group. Moreover, both groups had a similar range for the overestimation, but differed in the underestimation
error. MLD children showed a greater left bias than TD group in case of almost all numbers, except 7 and 8. Inspecting the EE for each number enabled us to describe error distribution profiles and therefore the probable estimation strategy used by the MLD and
TD groups.
Conclusion
It seems that MLD group tends to assess the number line segments starting from the leftend benchmark; setting an anchor in the center of the number line does not help them to estimate the positions of 4 and 6 correctly. In addition, all children had a greater EE for non-symbolic format, especially in case of high magnitudes, which may be interpreted as the both manifestation of estimation and dot counting errors.
Słowa kluczowe:
dyscalculia, spatial-numerical association, mathematical abilities, mental number line, number line estimationBibliografia
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edition). Washington, DC: American Psychiatric Association.
Crossref
Google Scholar
Ashcraft, M. H., & Moore, A. M (2012). Cognitive processes of numerical estimation in children. Journal of Experimental Child Psychology, 111(2), 246-67. DOI: 10.1016/j.jecp.2011.08.005
Crossref
Google Scholar
Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14, 545–551. DOI: 10.1037/a0028560
Crossref
Google Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B, 57(1) (Methodological), 289-300. DOI: 10.1111/j.2517-6161.1995.tb02031.x
Crossref
Google Scholar
Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, P., & Zorzi, M. (2010). Numerical Estimation in Preschoolers. Developmental Psychology, 46(2), 545-551. DOI: 10.1037/a0017887
Crossref
Google Scholar
Boland, P. J., & Hutchinson, K. (2000). Student selection of random digits. Journal of the Royal Statistical Society: Series D (The Statistician), 49, 519-529. DOI: 10.1111/1467-9884.00250
Crossref
Google Scholar
Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33, 1410–1419. DOI: 10.1037/0096-1523.33.6.1410
Crossref
Google Scholar
Booth, J.L., & Siegler R.S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189–201. DOI: 10.1037/0012-1649.41.6.189
Crossref
Google Scholar
Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534-41. DOI: 10.1016/j.tics.2010.09.007
Crossref
Google Scholar
Butterworth, B. (2003). Dyscalculia Screener by Brian Butterworth. Highlighting pupils with specific learning difficulties in maths. nferNelson Publishing Company Limited, London. Google Scholar
Butterworth, B., Varma S., & Laurillard, D. (2011). Dyscalculia: From Brain to Education. Science, 332, 1049-1053. DOI: 10.1126/science.1201536
Crossref
Google Scholar
Cai, Y.C., & Li, S.X. (2015). Small number preference in guiding attention. Experimental Brain Research, 233, 539-550. DOI: 10.1007/s00221-014-4134-3
Crossref
Google Scholar
Cangöz, B., Altun, A., Olkun, S. & Kacar, F. (2013). Computer Based Screening Dyscalculia: Cognitive and Neuropsychological Correlates. Turkish Online Journal of Educational Technology, 12(3). Google Scholar
Cappeletti, M., Muggleton, N., & Walsh, V. (2009). Quantity without numbers and numbers without quantity in the parietal cortex. Neuroimage, 46, 522-9. DOI: 10.1016/j.neuroimage.2009.02.016
Crossref
Google Scholar
Cipora, K., & Nuerk, H.-C. (2013). Is the SNARC effect related to the level of mathematics? No systematic relationship observed despitemore power,more repetitions, andmore direct assessment of arithmetic skill. The Quarterly Journal of Experimental Psychology, 66, 1974–1991. DOI: 10.1080/17470218.2013.772215
Crossref
Google Scholar
Cipora, K., Patro, K., & Nuerk, H.-C. (2015). Are spatial-numerical associations a cornerstone for arithmetic learning? The lack of genuine correlations suggests no. Mind, Brain, and Education, 9, 190-206. DOI: 10.1111/mbe.12093
Crossref
Google Scholar
Cohen, D. J., & Blanc-Goldhammer, D. (2011). Numerical bias in bounded and unbounded number line tasks. Psychonomic Bulletin & Review, 18, 331–338. DOI: 10.3758/s13423-011-0059-z
Crossref
Google Scholar
Cohen, D. J. & Quinlan, P.T. (2018). The log–linear response function of the bounded number-line task is unrelated to the psychological representation of quantity. Psychonomic Bulletin & Review, 25, 447–454. DOI: 10.3758/s13423-017-1290-z
Crossref
Google Scholar
Dehaene, S. (2011). Number sense. How the mind creates mathematics. Oxford University Press. Google Scholar
Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218-224. DOI: 10.1016/j.conb.2004.03.008
Crossref
Google Scholar
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506. DOI: 10.1080/02643290244000239
Crossref
Google Scholar
Ebersbach, M., Luwel, K. & Verschaffel, L. (2013). Comparing apples and pears in studies on magnitude estimations. Frontiers in Psychology, 4, 332. DOI: 10.3389/fpsyg.2013.00332
Crossref
Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307-14. DOI: 10.1016/j.tics.2004.05.002
Crossref
Google Scholar
Field, A., Miles, J. & Field, Z. (2012). Discovering statistics using R, London: Sage. Google Scholar
Field, A., & Wilcox, R. R. (2017). Robust statistical methods: a primer for clinical psychology and experimental psychopathology researchers. Behaviour Research and Therapy, 98, 19-38. DOI: 10.1016/j.brat.2017.05.013
Crossref
Google Scholar
Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition—From single digits to arithmetic. The Quarterly Journal of Experimental Psychology, 67(8), 1461-1483. DOI: 10.1080/17470218.2014.927515
Crossref
Google Scholar
Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114, 345-362. DOI: 10.1037/0033-2909.114.2.345
Crossref
Google Scholar
Geary, D. C. (2011). Cognitive predictors of individual differences in achievement growth in mathematics: a five year longitudinal study. Developmental Psychology, 47, 1539-1552. DOI: 10.1037/a0025510
Crossref
Google Scholar
Geary, D. C., Hoard, M. K., Byrd-Craven, J., & De Soto, C. M. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121. DOI: 10.1016/j.jecp.2004.03.002
Crossref
Google Scholar
Geary, D. C., Hoard, M. K, Nugent, L., & Bailey, D. H. (2012). Mathematical Cognition Deficits in Children With Learning Disabilities and Persistent Low Achievement: A Five-Year Prospective Study, Journal of Educational Psychology, 104, 206–223. DOI: 10.1037/a0025398
Crossref
Google Scholar
Geary, D. C., Hoard, M.K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental Neuropsychology, 33, 277–299. DOI: 10.1080/87565640801982361
Crossref
Google Scholar
Georges, C., Hoffmann, D., & Schiltz, C. (2017). Mathematical abilities in elementary school: Do they relate to number–space associations? Journal of Experimental Child Psychology, 161, 126-147. DOI: 10.1016/j.jecp.2017.04.011
Crossref
Google Scholar
Göbel, S. M., Calabria, M., Farnè, A., & Rossetti, Y. (2006). Parietal rTMS distorts the mental number line: simulating 'spatial' neglect in healthy subjects. Neuropsychologia, 44, 860-868. DOI: 10.1016/j.neuropsychologia.2005.09.007
Crossref
Google Scholar
Gut M., Matulewski, J. & Goraczewski, Ł. Prokalkulia 6-9: Test oceny behawioralnych wskaźników umysłowych reprezentacji liczb i ryzyka dyskalkulii. Pomorskie Centrum Diagnozy, Terapii i Edukacji Matematycznej Promathematica, Gdańsk 2016. Google Scholar
Halberda, J. & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44, 1457-1465. DOI: 10.1037/a0012682
Crossref
Google Scholar
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665–668. DOI: 10.1038/nature07246
Crossref
Google Scholar
de Hevia, M.D., Vallar, G., & Girelli, L. (2008). Visualizing numbers in the mind's eye: the role of visuo-spatial processes in numerical abilities. Neuroscience & Biobehavioral Reviews, 32, 1361-72. DOI: 10.1016/j.neubiorev.2008.05.015
Crossref
Google Scholar
Hoffmann, D., Mussolin, C., Martin R., & Schiltz, C. (2014). The impact of mathematical proficiency on the number-space association. PLoS ONE, 9(1), e85048. DOI: 10.1371/journal.pone.0085048
Crossref
Google Scholar
Hollands, J. G., & Dyre, B. P. (2000). Bias in proportion judgments: The cyclical power model. Psychological Review, 107, 500–524. DOI: 10.1037/0033-295X.107.3.500
Crossref
Google Scholar
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene S. (2005). Interactions between number and space in parietal cortex. Nature Review of Neuroscience, 6, 435-448. DOI: 10.1038/nrn1684
Crossref
Google Scholar
Isaacs, E. B., Edmonds, C. J., Lucas, A., & Gadian, D. G. (2001). Calculation difficulties in children of very low birthweight: a neural correlate. Brain, 124, 1701-1707. DOI: 10.1093/brain/124.9.1701
Crossref
Google Scholar
Kaufmann, L. & von Aster, M. (2012). The Diagnosis and Management of Dyscalculia. Deutsches Arzteblatt International, 109(45), 767-778. DOI: 10.3238/arztebl.2012.0767
Crossref
Google Scholar
Koontz, K. L., & Berch, D. B. (1996). Identifying simple numerical stimuli: Processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2, 1–23. DOI: 10.1080/135467996387525
Crossref
Google Scholar
Krajcsi, A., Kojouharova, & P., Lengyel, G. (2017). Development of Understanding Zero. Preprints.
Crossref
Google Scholar
Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., Gälli, M., Martin E., & von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. Neuroimage 57, 782-95. DOI: 10.1016/j.neuroimage.2011.01.070
Crossref
Google Scholar
Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93, 99–125. DOI: 10.1016/j.cognition.2003.11.004
Crossref
Google Scholar
Landerl, K., Fussenegger, B., Moll, K. & Willburger, E. (2009). Dyslexia and dyscalculia: two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103(3), 309-324. DOI: 10.1016/j.jecp.2009.03.006
Crossref
Google Scholar
LeFevre, J-A, Lira,C. J., Sowinski, C., Cankaya, O., Kamawar, D., & Skwarchuk, S-L. (2013). Charting the role of the number line in mathematical development. Frontiers in Psychology, 4, 641. DOI: 10.3389/fpsyg.2013.00641
Crossref
Google Scholar
Link, T., Huber, S., Nuerk, H-Ch. & Moeller, K. (2014). Unbounding the mental number line – new evidence on children’s spatial representation of numbers. Frontiers in Psychology, 4, 1021. DOI: 10.3389/fpsyg.2013.01021
Crossref
Google Scholar
Longo, M.R., & Lourenco, S.F. (2007). Spatial attention and the mental number line: Evidence for characteristic biases and compression. Neuropsychologia, 37, 843-855. DOI: 10.1016/j.neuropsychologia.2006.11.002
Crossref
Google Scholar
Longo, M. R., Lourenco, S.F., & Francisco, A. (2012). Approaching stimuli bias attention in numerical space. Acta Psychologica, 140, 129-132. DOI: 10.1016/j.actpsy.2012.04.001
Crossref
Google Scholar
Luwel, K., Peeters, D, Dierckx, G., Elke Sekeris E., & Verschaffel, L. (2018). Benchmark-based Strategy Use in Atypical Number Lines. Canadian Journal of Experimental Psychology, 72(4), 253–263. DOI: 10.1037/cep0000153
Crossref
Google Scholar
Mair, P., & Wilcox, R. (2016). Robust statistical methods in r using the wrs2 package. Unpublished technical report. Google Scholar
McCaskey, U., von Aster, M., Maurer, U., Martin, E., O’Gorman Tuura, R., & Kucian, K. (2018). Longitudinal brain development of numerical skills in typically developing children and children with developmental dyscalculia. Frontiers in Human Neuroscience, 11, 629. DOI: 10.3389/fnhum.2017.00629
Crossref
Google Scholar
Merrit, D. J., & Brannon, E. M. (2013). Nothing to it: Precursors to a zero concept in preschoolers. Behavioural Processes, 93, 91–97. DOI: 10.1016/j.beproc.2012.11.001
Crossref
Google Scholar
Michels, L., O’Gorman, R., & Kucian, K (2018). Functional hyperconnectivity vanishes in children with developmental dyscalculia after numerical intervention. Developmental Cognitive Neuroscience, 30, 291-303. DOI: 10.1016/j.dcn.2017.03.005
Crossref
Google Scholar
Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: developmental and educational implications. Advances in Child Development and Behavior, 42, 197–243. DOI: 10.1016/b978-0-12-394388-0.00006-x
Crossref
Google Scholar
Molko, N., Cachia, A., Riviere, D., Mangin, J. F., Bruandet, M., Le Bihan, D., Cohen, L., & Dehaene, S. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron, 40, 847-858. DOI: 10.1016/s0896-6273(03)00670-6
Crossref
Google Scholar
Mussolin, C., Mejias, S., & Noël, M.P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115, 10-25. DOI: 10.1016/j.cognition.2009.10.006
Crossref
Google Scholar
Mussolin, C., De Volder, A., Grandin, C., Schlögel, X., Nassogne, M. C., & Noël, M. P. (2009). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22, 860-74. DOI: 10.1162/jocn.2009.21237
Crossref
Google Scholar
Nuerk, H. C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. (2011). Extending the mental number line. A review of multi-digit number processing. Journal of Psychology, 219, 3-22. DOI: 10.1027/2151-2604/a000041
Crossref
Google Scholar
Patro, K., Nuerk, H.-Ch., Cress, U., & Haman, M. (2014). How number-space relationships are assessed before formal schooling: A taxonomy proposal. Frontiers in Psychology, 5, 419. doi.org/10.3389/fpsyg.2014.00419
Crossref
Google Scholar
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S., & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33-41. DOI: 10.1016/j.cognition.2010.03.012
Crossref
Google Scholar
Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274–278. DOI: 10.1037/h0028573
Crossref
Google Scholar
Rinaldi, L., & Girelli, L. (2016). A place for zero in the brain. Trends in Cognitive Sciences, 20(8), 563-564. DOI: 10.1016/j.tics.2016.06.006
Crossref
Google Scholar
Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., & Loenneker T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. Neuroimage, 39, 417-22. DOI: 10.1016/j.neuroimage.2007.08.045
Crossref
Google Scholar
Rouder, J. N, & Geary, D. C. (2014). Children's cognitive representation of the mathematical number line. Developmental Science, 17(4), 525-36. DOI: 10.1111/desc.12166
Crossref
Google Scholar
Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 51. DOI: 10.3389/neuro.09.051.2009
Crossref
Google Scholar
Sandrini M., & Rusconi E. (2009). A brain for numbers. Cortex, 45, 796-803. DOI: 10.1016/j.cortex.2008.09.002
Crossref
Google Scholar
Sasanguie, D., Verschaffel, L., Reynvoet, B. & Luwel, K. (2016). The Development of Symbolic and Non-Symbolic Number Line Estimations: Three Developmental Accounts Contrasted Within Cross-Sectional and Longitudinal Data. Psychologica Belgica, 56(4), 382–405. DOI: 10.5334/pb.276
Crossref
Google Scholar
Schwarz, W., & Eiselt, A. K. (2009). The perception of temporal order along the mental number line. Journal of Experimental Psychology: Human Perception and Performance, 35, 989-1004. DOI: 10.1037/a0013703
Crossref
Google Scholar
Sella, F., Sasanguie, D. & Reynvoet, B. (2020). Judging the order of numbers relies on familiarity rather than activating the mental number line. Acta Psychologica, 204, 1-7. DOI: 10.1016/j.actpsy.2020.103014
Crossref
Google Scholar
Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–243. DOI: 10.1111/1467-9280.02438
Crossref
Google Scholar
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817–835. DOI: 10.1037/a0016127
Crossref
Google Scholar
Wechsler, D. (1974). Wechsler intelligence scale for children—revised. New York: Psychological Corporation. Google Scholar
Wellman, H. M., & Miller, K. (1986). Thinking about nothing: Development of concepts of zero. British Journal of Developmental Psychology, 4, 31-42. DOI: 10.1111/j.2044-835X.1986.tb00995.x
Crossref
Google Scholar
Wilcox, R. R. (2012). Introduction to Robust Estimation & Hypothesis Testing. 3rd edition. Amsterdam, The Netherlands: Elsevier.
Crossref
Google Scholar
Bug Bomb Games Studio in Toruń
University of Gdansk
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.